
EE290C/EE194 SP24: Tapeouts in Intel 16

05/20/2024
Ryan Ma, Darwin Zhang, Jessica Fan, Jonathan Wang, Nico Castaneda, 
Kevin He, Minh Nguyen, Ethan Gao, Naichen Zhao



• Introduction and Overview
• BearlyML24
• DSP24
• Questions

Agenda

1



EE290C/EE194 SP24 Overview

~ 45 
students*

*excluding our 

third chip, SCuM-V

2

Borivoje Nikolić

Kristofer Pister



• While students eventually specialize in parts of the chip-design process, an overarching goal for this 
iteration of the class is to ensure that all students are exposed to every step in the chip design process 
through the lab material

• As part of the revised lab content for the class, a completely new set of labs was developed

Class Improvement: Revised Lab Content

Chisel & 
Chipyard

VLSI w/ 

HammerDigital

Design 

Abstraction
Analog

Manual 

Module 
(Inverter) 
Design

Integration

3



Chip Overview BearlyML’23

4 Rocket Cores 

Sparse Matrix Accel.

Prefetcher

DMA Near Memory

Scratchpad

BearlyML’24

4 Rocket Cores 

Sparse-Sparse Accel.

Convolution Engine

Quantized Transformer

NearMem MAC

Scratchpad

DSP’24

4 Saturn Vector Cores 

Convolution Accel.

SDF-FFT Accel.

Audio I2S Interface

General DMA

Scratchpad

Changes from Prior Iteration

Two Digital Chips: BearlyML & DSP

4



Two Digital Chips: BearlyML & DSP

Intel ring PLL
Scratchpad

L2 cache

Intel ring PLL

Scratchpad

L2 cache

Nearmem MACs

Nearmem Convolution

2x Sparse-Sparse 2x Quantized Transformer

SDF-FFT
Convolution 
Engine

I2S Audio

4x Saturn-V

DMA

BearlyML’24 DSP’24

4x Rocket

5



• Introduction and Overview
• BearlyML
• DSP
• Questions

Agenda

6



● Designed for ML applications
● Added features:

○ Nearmem MAC
○ Nearmem convolution
○ 256 KiB L2 cache
○ 32 KiB scratchpad

● 4x Rocket Tiles
○ 2 with Quantized Transformer
○ 2 with Sparse-Sparse matmul 

accelerator
● Buses widths expansion

○ 128-bit NoC by Constellation

BearlyML Overview

7



BearlyML Applications

Interesting applications such as satellite imagery 
classification that fuse GCNs with CNNs (Ensemble 
models) can be run on BearlyML

Liang, Deng, Zeng, A Deep Neural Network Combined CNN and GCN for 
Remote Sensing Scene Classification
(https://ieeexplore.ieee.org/document/9149910)

GCN Layer 

8



Convolution Engine

• Memory-mapped I/O (MMIO) convolution accelerator

• MMIO registers store image address, image height, image 
width, kernel, and status

• 3 x 3 kernel used for the convolution computations

• INT8 datatype for all matrices

TileLink

• Enables L2 cache memory requests
• Ready/Valid protocol for accelerator status

9



Convolution Engine

• On average, engine enables a minimum 95x convolution 
speedup

• As the image area increases, engine’s MAC pipeline enables 
us to rapidly perform core accumulation faster, leading to 
speedup

Future Improvements

• Experiment with RTL and evaluation pipeline to figure out 
tradeoff between adding more processing capability to 
MAC pipeline vs. software speedup

• Currently require input matrix via MMIO to be cache width 
aligned; find a way to ease this restraint and pad non-
aligned input images appropriately

10



• MAC is on the DMA Engine, contains a direct pipeline to 
memory that increases the speed of our memory accesses

• Each DMA Tile has faster read/write to its corresponding L2 
Cache, but not to the other 3

Interfaces:

● ReadPort

○ Read from memory using srcAddr, incremented by 
srcStride, count times

● ReadWritePort

○ For memcpy, after copying from srcAddr, write to 
destAddr

○ For MAC, after multiplying with operandRegister, write 
to destinationRegister

NearMem MAC

11



• ~10-32x speed-up for same L2 cache hits from single 
DMA tile

• ~15-85x speed-up for different L2 cache hits from 
single DMA tile

• Found minimal improvements in cycle count for 
prefetching compared to no prefetching

• If more area is allowed, could show more 
improvement in prefetching

• Conclusion: Performance improvement not worth the 
area increase for prefetching

NearMem MAC

12



Sparse-Sparse Accelerator: Architecture

13



Collects all 5 RoCC Command

Sparse-Sparse Accelerator: Architecture

14



Centralized Controller 

High Level FSM

Sparse-Sparse Accelerator: Architecture

15



Hardware Compression Unit

Compress B Matrix into CSR

Sparse-Sparse Accelerator: Architecture

16



Fifo for storing A CSRs

Sparse-Sparse Accelerator: Architecture

17



Dispatches the MAC Operation

by fetching the B row based on A 

element’s Column ID

Sparse-Sparse Accelerator: Architecture

18



Multiply-and-Accumulate Unit

Sparse-Sparse Accelerator: Architecture

19



• See significant decreases in cycle counts for matrices 
of all levels of sparsity, with largest improvements on 
more sparse matrices.

• Potential Improvements:

– Add more MAC units to increase parallelism

– Add support for hardware quantization

• FP32 → INT8

• Reduces inference latency for ML models

Sparse-Sparse Accelerator Performance

Density Unit Average Improvement

10%-10% Accel 1846 x123

CPU 227101

25%-25% Accel 2271 x100

CPU 227102

50%-50% Accel 3339 x68

CPU 227105

100%-100% Accel 6679 x34 

CPU 227101
20



Quantized Transformer

21

• Possesses independent modules to perform all operations 
needed for a quantized transformer

– Vector-wise ReLU, Softmax, and LayerNorm

– Dot Product and FP32 -> INT8 Quantization

• Instruction controller loads and stores vectors, passes input 
vectors to the correct module, and passes the output 
vector/scalar back to main memory

• Supports 8-wide INT8 vectors

Interfaces:

● RoCC

○ Custom instructions pass data to the accelerator

○ Return 64-byte (scalar) outputs to CPU

● HellaCacheIO

○ Loading/Storing vectors through cache requests



Quantized Transformer

22

• Benchmarks used 128-wide randomized INT8 vectors

• 128x128 Matmul - 4.77x speedup

• 128-vector Quantization - 2.14x speedup

• 128-vector ReLU - 2.54x speedup

• 128-vector Softmax - 5.97x speedup

• 128-vector LayerNorm - 13.36x speedup

Conclusions:

• Performance boosts even with load/store overhead

• Increasing vector size (area) can reduce overhead 

• More hardware-software co-design can further optimize for 
specific transformer workloads



• Introduction and Overview
• BearlyML
• DSP
• Questions

Agenda

23



● Designed for Audio processing 
applications

● Added features:
○ Audio interface

■ I2S + Sigma-Delta DAC
○ Convolution accelerator
○ SDF-FFT accelerator
○ DMA engine
○ 256 KiB L2 cache
○ 32 KiB scratchpad

● 4x Saturn-V Tiles
○ Rocket core + Vector unit

● Buses widths expansion
○ 128-bit NoC by Constellation

DSP Overview

24



● 1. Audio Input/Output: Process audio input, ex: from an 
instrument.

● 2. FFT: Analyze the frequency components of the incoming 
signal:

○ Frequency-based Effects: Equalization or harmonic generation 
Pitch Detection: Detect the pitch of the incoming notes: tuning, 
pitch shifting effects, note detection

● 3. Convolution: Effects Simulation- By convolving the guitar 
signal with impulse responses of pedals like overdrive, 
distortion, chorus, or delay, the device can emulate the sound 
and response of these effects pedals digitally.

● 4. Saturn-V Vector Core: The addition of vector cores allows for 
more specialized algorithms (DCT, Wavelet Transforms, Filters) 
to be accelerated with minimal loss in performance.

DSP Applications: Audio Effects Processing

25

DMA, 

FFT DMA, 

Dilated 
Convol

ution

DMA I2S



Saturn RISC-V Vector Core

• 4x Rocket in-order cores with 
Saturn Vector units

• Direct-mapped 4 KiB ICache & 4 KiB 
DCache

• RISC-V Vector Extension Version 1.0 
compliant

• Minimal area configuration 
targeting integer operations: 
VLEN=256 DLEN=64

• 423.36 x 550.98 um

26
Thank you, Saturn Team:  Jerry Zhao, Daniel Grubb, Miles Rusch, Tianrui Wei, Ella Schwarz

Saturn Core Floor Plan



Scalar vs Vector Performance

• Vector instructions significantly 
decrease instruction overhead with 
more ops/instruction

• Increased performance in data-parallel 
applications can match or even 
outperform small dedicated 
accelerators

27



• Performs 1D dilated convolution for 
audio processing applications on FP16 
audio data

• Can alter, classify, or detect audio
• Dilated convolution used to increase 

effectiveness of CNNs

• Sends and receives data with the DMA
• Computes convolution with 

multiplication units + an adder tree
• FSM handles floating point and datapath 

errors

DSP Convolution Accelerator

28



DSP Convolution Accelerator: Implementation

Input Length CPU (Rocket) Cycles Accelerator Cycles Speedup

16 74303 910 82x

32 152894 1310 117x

64 306917 2105 146x

256 1230245 6516 189x
29



30

Chipyard integration of the SDF-FFT generator
written by Vladimir Milovanović and Nikola 
Petrovic
- Drastically smaller and scales better than 

the built-in chipyard FFT generator
- Custom TileLink Front-end with input and 

output buffers

Our config has a 128-point FFT accelerator
- takes in two stacked 16-bit fixed-point

values

SDF-FFT Accelerator

https://github.com/milovanovic/sdf-fft?tab=readme-ov-file


31

Designed and Integrated 8 Channel 
Audio subsystem

● 4 Stereo Transmit and Receive 
Channels

● External Codec Support w/ I2S
● Built in 16 bit Delta-Sigma DAC
● Programmable Clock Generator
● 8-32 Bits/Sample or FP16
● 120Hz-4MHz Sample Rate
● Supports External Clock Generation

Audio I2S



32

Programming Interface:

● 64 Bit MMIO FIFO Registers Packed 
● 64 Byte Queues for each TX/RX channel
● Configuration Bits
● Watermark Registers for DMA Access

Testing:

● DAC + I2S FPGA Tested with FE-PI 
external CODEC + Nexys4DDR

● RTL Tested with custom VIP

Audio I2S



33

DMA performs various TileLink memory operations

- Memory → Memory

- Peripheral → Memory

- Memory → Peripheral

We support:

- Multiple channels with load balancing

- Double-buffered operations

- Peripheral polling to see if they are ready for data 

transfer

- Variable transfer width/length

- Variable stride on read and write

- Multiple inflight operations (Currently set to 8)

General DMA



Questions?

34

DSPBearlyML ‘24

DSP Final 
Design was 

sent to Intel on 
May 12, Bearly 

on May 13

All accepted on 
May 15

Special thanks to the Apple New Silicon Initiative & Intel University Shuttle Program!


	Slide 1
	Slide 2: Agenda
	Slide 3: EE290C/EE194 SP24 Overview
	Slide 4: Class Improvement: Revised Lab Content
	Slide 5: Chip Overview 
	Slide 6: Two Digital Chips: BearlyML & DSP
	Slide 7: Agenda
	Slide 8: BearlyML Overview
	Slide 9: BearlyML Applications
	Slide 10: Convolution Engine
	Slide 11: Convolution Engine
	Slide 12: NearMem MAC
	Slide 13: NearMem MAC
	Slide 14: Sparse-Sparse Accelerator: Architecture
	Slide 15: Sparse-Sparse Accelerator: Architecture
	Slide 16: Sparse-Sparse Accelerator: Architecture
	Slide 17: Sparse-Sparse Accelerator: Architecture
	Slide 18: Sparse-Sparse Accelerator: Architecture
	Slide 19: Sparse-Sparse Accelerator: Architecture
	Slide 20: Sparse-Sparse Accelerator: Architecture
	Slide 21: Sparse-Sparse Accelerator Performance
	Slide 22: Quantized Transformer
	Slide 23: Quantized Transformer
	Slide 24: Agenda
	Slide 25: DSP Overview
	Slide 26: DSP Applications: Audio Effects Processing
	Slide 27: Saturn RISC-V Vector Core
	Slide 28: Scalar vs Vector Performance
	Slide 31: DSP Convolution Accelerator
	Slide 32: DSP Convolution Accelerator: Implementation
	Slide 33: SDF-FFT Accelerator
	Slide 34: Audio I2S
	Slide 35: Audio I2S
	Slide 36: General DMA
	Slide 37: Questions?

