
Iris: Microarchitectural Event Database
5/20/2024
Nicolas Castaneda, Kevin He, Jerry Zhao 



○ Goal: Understand RTL Behavior
○ Debug increasingly complex cores
○ Add features to complex systems and identify tradeoffs
○ Identify performance bottlenecks
○ Current solutions either fail to capture sufficient information or fail to 

deliver it in a comprehensible manner

Motivation for Event Logs

2

Instruction 
Commit Log

Waveform 
Viewer



Motivation for Event Logs

3

○ Trace-like logs are too coarse-grained 
○ No information regarding the relationship between multiple resident 

instructions and the microarchitecture
○ No way to reason about how instructions interact with the 

microarchitecture
○ Insufficient information regarding timing

Rocket Instruction Commit Log



Motivation for Event Logs

4

○ Waveforms contain too much information
○ Value for every bit in the RTL design over millions of cycles
○ Requires extensive knowledge of microarchitecture signals
○ Time consuming for initial debugging
○ Dependency chains between signals aren't captured 

Rocket Waveforms



○ Our solution: IrisDB
○ Flexible API for extracting microarchitectural events and data in RTL
○ Middle ground between waveforms and instruction commit logs
○ Provides a good starting point for debugging

○ Outputs event log for post-processing or analysis

Microarchitectural Event Annotation API

5

IRIS Event 
Database

Instruction 
Commit Log

Waveform 
Viewer



○ Represents the microarchitectural state 
as a sequence of dependent events
○ Microarchitecture agnostic representation
○ Nodes represent single cycle events
○ Edges represent the resolution of a hazard, 

allowing the subsequent event to occur
○ Easily configured and analyzed
○ Exposes a standard DB schema
○ Can easily change resolution of events
○ Can easily query graph for specific 

information (i.e. an instruction trace)

Event Graph Model

6

Event Graph



s1_tag := GenEvent(“s1”, s1_valid, s1_data, None)

GenEvent Chisel Tag Passing

s2_tag := GenEvent(“s2”, s2_valid, s2_data, s1_tag)
GenEvent(“s3”, s3_valid, s3_data, s2_tag)



GenEvent Module

○ Each GenEvent Module has a:
○ Event Name
○ Valid input
○ Data input
○ Optional Parent ID input

○ When valid, GenEvent logs event 
name, cycle, inputs, and generates a 
unique Event ID Tag

○ Event ID Tags are the primary keys of 
the event database

○ Module outputs Event ID tag in RTL



Application: Konata Pipeline Viewer

https://github.com/shioyadan/Konata

GenEvent API to Konata visualizer flow

○ Run RTL simulation with GenEvent annotated architecture
○ Reconstruct the event graph using NetworkX
○ Perform depth-first-search to construct the instruction traces
○ Format sequences into a Konata log file
○ Use Konata application for waterfall visualization of instruction 

execution



Application: Konata Pipeline Viewer

https://github.com/shioyadan/Konata
Rocket Konata Pipeline Visualization



○ Microarchitecture agnostic:
○ Sodor Educational Cores
○ 1 stage, 2 stage, 5 stage, and microcoded cores 

annotated
○ Rocket In-Order Core
○ Integer, mul/div, and cache request/response 

pipelines annotated
○ Gemmini Accelerator
○ Load, Store, and Execution controllers, 

LoopMatmul and LoopConv FSMs, scratchpad 
reads/writes, mesh

Application: Annotated Microarchitectures

11

Gemmini Event Graph 
(Y-axis is time)



Conclusion

12

○ Extensible RTL event logging API
○ Flexible graph event representation 
○ Implemented in Chisel with GenEvent
○ Graph to visualization flow with Konata

○ Questions?



○ Demo!

13



Acknowledgements

14

○ Thank you, Vighnesh Iyer, Joonho Whangbo, 
and Ethan Gao for your help!


