Motivation

Provide a general APl for extracting micro-

d

< Verbosity >

rchitectural events and data in Chipyard

nstruction commit logs are too coarse-grained
Waveforms are too fine-grained, slows debugging

Event Logs provide a balance of visibility and
useability

ldentify tradeoffs and performance bottlenecks

Output logs can be easily post-processed for
further analysis and debugging

Quickly view dependencies without detailed
knowledge of RTL design signals

Educational tool for understanding Chipyard
microarchitectures on real workloads
Waveforms

Commit Log Chisel Printf IRIS

Tool Flow

Annotate RTL with GenEvent tags

Tag events of interest: reqgs, resps, valids, hits,
misses, pipeline stages, etc. with GenEvent
module

Pass GenEvent output parent/child tags through
logic to connect GenEvent instances OR specify
common instruction ID such as PC

Extract logic sighals: addresses, instructions,
register values, IDs

Output logs with DPI-C or stdout in RTL-sim

Run Python Script on Generated Log

Provide schema for particular core
Disassembles instructions

Generates graph of instruction events and
converts instruction traces to Konata log

Visualize Using Konata

4

\

A ([D R

Python Processing
Script

Konata Pipeline

Chisel GenEvent() Viewer

Iris: Microarchitectural Event Database

Nicolas Castaneda, Kevin He, Jerry Zhao

Event Graph Generation

GenEvent Module

@Event()

RoCC
DPI-C/stdout \ ©ommand)y 9

Event(name, Event ID, Data, Parent, Cycle) J

]

'LoopMatmul |

Valid
Data ::/l
Parent

A ROB Issue S——

MVIN2

ROB Issue

MVIN ROB Issue
Preload

\.

Cycle Counter

Load
Controller

Load

Controller

)Er}f— Event ID ——»

Execute

\GenEvent ID

Controller

/

Pipeline
Stage 1

\

{ GenEvent

tag

Execute

Controller

Gemmini Event Graph

ROB Issue
Compute

Preload

SPAD \/ SPAD SPAD
Read /\Read/ \ Read SPAD)\ (SPAD
Read Read

3-stage CPU GenEvent Microarchitecture Annotation Example

Pipeline
Stage 2

Y

\ A

\

\/

{ JE

Y

|
)

Y

Pipeline
Stage 3

\4

—L GenEventJ
Pipeline Viewer

GenEvent }

Event Graph Model

ROB Issue
MVOUT

Controller

— I8revl

 Represents the microarchitectural state as a
sequence of dependent events

* Nodes represent single cycle events

 Edges represent the resolution of a hazard,
allowing the subsequent event to occur

 (Can easily query graph for specific information (i.e.
an instruction trace)

e Each GenEvent Module has an event name, valid
input, data input, and an optional Parent ID input

* When valid, GenEvent logs the data, cycle, parent
ID, and event name, while outputting a unique
Event ID.

* By passing Event ID tags, desighers connect
dependent microarchitectural events

Gemmini Extracted Graph

Implemented Cores

y | AN /

https://github.com/ucb-bar/iris-event-utils

nicolas.a.castaneda@berkeley.edu, kevinjhe@berkeley.edu, jzh@berkeley.edu

Konata Visualization of Rocket

Rocket Core

* Integer, mul/div, and cache request/response
pipelines annotated

Sodor Cores

1 stage, 2 stage, 5 stage, and microcoded cores
annotated

Gemmini
e Load, Store, and Execution controllers,

LoopMatmul and LoopConv FSMs, scratchpad
reads/writes, mesh

Future Work

Annotating Additional Cores

* Saturn and BOOM

More Microarchitecture Detalil

 Annotating additional latencies for debugging

* Event filtering tools, graph visualization,
downstream analysis tools

:
Berkeley Babt

[l
SLICE Retreat May 2024

