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Abstract—In this work, we present a novel technique for GPU-
accelerated Boolean satisfiability (SAT) sampling. Unlike conven-
tional sampling algorithms that directly operate on conjunctive
normal form (CNF), our method transforms the logical constraints
of SAT problems by factoring their CNF representations into sim-
plified multi-level, multi-output Boolean functions. It then leverages
gradient-based optimization to guide the search for a diverse set of
valid solutions. Our method operates directly on the circuit structure
of refactored SAT instances, reinterpreting the SAT problem as a su-
pervised multi-output regression task. This differentiable technique
enables independent bit-wise operations on each tensor element,
allowing parallel execution of learning processes. As a result,
we achieve GPU-accelerated sampling with significant runtime
improvements ranging from 33.6× to 523.6× over state-of-the-art
heuristic samplers. We demonstrate the superior performance of our
sampling method through an extensive evaluation on 60 instances
from a public domain benchmark suite utilized in previous studies.

Index Terms—Boolean Satisfiability, Gradient Descent, Multi-
level Circuits, Verification, and Testing.

I. INTRODUCTION

High-throughput SAT samplers play a crucial role in advanc-
ing the state of the art in software and hardware verification
methodologies [1]. Generating a set of random solutions to
logical constraints is critical in the verification, testing, and
synthesis. In software verification, SAT samplers enable efficient
exploration of diverse execution paths, addressing the scalability
challenges inherent in symbolic execution [2]–[17]. In hardware
verification, they support the generation of varied input patterns,
ensuring a rigorous and effective verification process [18]–[21].

The SAT sampling process begins by formulating the logical
constraints of the target application into conjunctive normal form
(CNF) [22]. CNF is the specific format required by most SAT
samplers, where the logical formula is expressed as a conjunction
of clauses, with each clause being a disjunction of literals. The
complexity of the logical constraints in the target application
can result in a CNF that is not always concise. Nevertheless,
CNF remains the preferred format due to the strong performance
of SAT samplers and solvers. The complexity of the CNF can,
however, affect the efficiency of these solvers.

SAT solvers employ various strategies to find a satisfying
assignment for the variables in the CNF. Modern SAT solvers
[23]–[25] often use the conflict-driven clause learning (CDCL)
algorithm [26], [27], that relies heavily on heuristics such as
conflict-driven backtracking and clause learning. These heuristics
effectively guide the CDCL algorithm in finding a satisfying
assignment. Due to the sequential nature of these heuristics, that
involve branching and backtracking, the latest SAT solvers are
typically executed on CPUs. Consequently, state-of-the-art SAT
samplers, which incorporate SAT solvers within their algorithms,
also rely on a sequential process and are optimized for CPU
execution.

Generating multiple satisfying solutions to the SAT problem
is a good match to GPU computing, provided that a sampling
method is available that performs consistent, data-parallel compu-
tations. To address this opportunity, we propose a transformation
algorithm that converts logical constraints encoded as a CNF
into a simplified multi-level, multi-output Boolean function while
maintaining the original logical constraints. This transformation
significantly reduces the number of bit-wise operations and thus
lowers the complexity of the sampling process. We then for-
mulate the resulting simplified multi-level, multi-output Boolean
function as a multi-output regression task, where each logic
gate is represented probabilistically, enabling the use of gradient
descent (GD) to learn diverse solutions. This approach enables
the parallel generation of independent SAT problem solutions,
allowing for effective GPU acceleration. We demonstrate the
superior performance of our sampling method across 60 instances
from a publicly available benchmark suite [28] used in previous
studies. The code of our sampler is available at https://github.
com/arashardakani/High-Throughput-SAT-Sampler.

II. PRELIMINARIES

A. SAT Sampling

SAT sampling involves drawing solutions from the solution
space defined by a set of logical constraints expressed in CNF.
In SAT sampling applications, Boolean expressions are typically
represented in higher-level logical formats before being converted
into CNF [22], [29]. These formats include propositional logic
with operators like AND, OR, NOT, implications, and equiva-
lences, as well as more complex structures such as if-then-else
conditions, arithmetic expressions, and bit-level operations. In
hardware verification, Boolean expressions can take the form of
circuit representations, such as And-Inverter Graphs (AIGs) or
Binary Decision Diagrams (BDDs). In cryptographic contexts,
Algebraic Normal Form (ANF) is sometimes used. These repre-
sentations are transformed into CNF through logical simplifica-
tions, flattening complex structures, and applying techniques like
Tseitin transformation [30]. This transformation preserves the
satisfiability of the original formula while introducing auxiliary
variables when needed. The conversion to CNF provides SAT
solvers with a standardized problem representation that retains
the essential constraints of the original problem.

A CNF consists of a conjunction of clauses (i.e., an AND of
multiple clauses), where each clause consists of a disjunction of
literals (i.e., an OR of literals). Literals refer to Boolean variables
or their negations. In SAT solving, the goal is to determine
if there exists an assignment of binary values to the variables
in a given CNF, representing a Boolean expression, such that
all clauses evaluate to 1. SAT sampling adds a probabilistic
layer to this process. Instead of seeking just one solution for
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satisfiable instances, the aim is to produce multiple solutions or
samples from the complete set of possible solutions. Generating
samples from SAT instances plays a crucial role in design
verification, testing, and synthesis, with significant applications
in constrained-random verification (CRV) [18].

A common method for SAT sampling involves using SAT
solvers with built-in sampling functionality. These solvers are
designed not only to determine the satisfiability of a Boolean
formula but also to extract solutions from the solution space.
Efficient SAT solving techniques include backtracking algorithms
like the Davis-Putnam-Logemann-Loveland (DPLL) algorithm
[31], stochastic local search methods such as WalkSAT [32], and
CDCL algorithms [26], [27]. In recent years, several approaches
have been developed for SAT sampling, including randomized
algorithms, Markov chain Monte Carlo (MCMC) techniques, and
heuristic-based sampling methods [1], [33]–[36]. These methods
typically explore the solution space iteratively, selecting can-
didate solutions based on predefined criteria and stochastically
deciding whether to accept or reject them.

SAT solvers and samplers have been optimized over decades to
efficiently handle problems in CNF. CNF is well-suited for SAT-
solving algorithms like DPLL and CDCL. These algorithms take
advantage of CNF’s structure to systematically explore possible
truth assignments, detect conflicts early, and prune the search
space efficiently. By focusing on individual clauses, which define
specific constraints on solutions, the use of CNF enables solvers
to address highly complex problems in a manageable way.

B. Multi-Output Regression Task

A multi-output regression task, in the context of example
generation, refers to the process of creating data points (or
“examples”) that serve as input-output pairs for a given model
[37]. The main goal is to generate inputs such that they satisfy
multiple specific output constraints simultaneously. Various meth-
ods, such as linear regression, neural networks or probabilistic
representations of the relationships between inputs and outputs,
can be used to construct such a model. The inputs to the model
are adjusted in an iterative manner to minimize the difference
between the predicted and actual output values. One common
way to measure this difference is by using metrics like mean
squared error (MSE) or ℓ2 loss.

III. METHODOLOGY

In this section, we present a transformation algorithm paired
with an optimization method to generate valid and diverse
solutions to SAT problems. Our algorithm transforms a CNF from
its flat, two-level structure into a more streamlined, multi-level,
multi-output Boolean function, reducing both operations and
logical constraints. We then apply gradient-based optimization to
efficiently learn valid solutions using the simplified multi-level,
multi-level function.

As discussed in Section II-A, Boolean expressions are typi-
cally represented in more abstract logical formats before being
converted to CNF. In other words, the sub-expressions (i.e.,
sub-clauses) in a CNF often result from the transformation of
single logical operators or the combination of multiple operators.
This transformation increases the size of the CNF. Therefore, a
sampler that could operate directly on the logical operators repre-
sented by the sub-expressions in a CNF would be advantageous.
Motivated by this, we introduce our transformation algorithm,

which converts CNF into an equisatisfiable multi-level, multi-
output Boolean function, and demonstrate how this function can
be used to generate various valid and distinct solutions using
gradient-based optimization.

A. Transformation Algorithm

Let us first review the clauses, known as the CNF signature
[38], which represent primary logical operators as a result of the
Tseitin transformation. The CNF structure of an inverter with the
input x and the output f , i.e., f(x) = ¬x, is given by

(f ∨ x) ∧ (¬f ∨ ¬x), (1)

where ∨ and ∧ denote logical OR and AND operators, respec-
tively. The clauses representing the logical OR operator with n
inputs and an output f , i.e., f(x1, x2, . . . , xn) =

∨n
i=1 xi, can

be expressed as(
¬f ∨

n∨
i=1

xi

)
∧

(
n∧

i=1

(f ∧ ¬xi)

)
. (2)

The clauses representing the logical AND operator with n inputs
and an output f , i.e., f(x1, x2, . . . , xn) =

∧n
i=1 xi, are similar

to those of the logical OR operator with its input and output
variables inverted, i.e.,(

f ∨
n∨

i=1

¬xi

)
∧

(
n∧

i=1

(¬f ∧ xi)

)
. (3)

The CNF structure of the logical NAND and NOR operators can
be derived in a similar manner by inverting the output variable in
the clauses associated with the logical AND and OR operators,
respectively. The CNF signature of the logical XOR operator with
n inputs and an output f is is given by

(¬f ∨ XOR(x1, . . . , xn)) ∧ (f ∨ ¬XOR(x1, . . . , xn))

=¬XOR(x1, . . . , xn, f) = XNOR(x1, . . . , xn, f). (4)

Similarly, the CNF structure for the logical XNOR operation can
be described as XOR(x1, . . . , xn, f).

While deriving logical operators from the CNF signatures
described above is straightforward through pattern matching,
this method is limited to identifying clauses linked to primary
logical operators. It does not handle sub-expressions that may
involve more complex Boolean expressions constructed from
these operators. For example, the clauses

(¬x4 ∨ ¬x107 ∨ x5)∧
(¬x4 ∨ x107 ∨ ¬x5)∧
(x4 ∨ ¬x108 ∨ x5)∧
(x4 ∨ x108 ∨ ¬x5) (5)

from the ’75-10-1-q’ CNF instance correspond to the function
x5(x4, x107, x108) = (x107 ∧ x4) ∨ (x108 ∧ ¬x4), which cannot
be identified using pattern matching alone, as it is impractical to
store all possible Boolean patterns. This underscores the need
for a general transformation algorithm capable of identifying
the Boolean sub-expressions and constraints represented by the
clauses.

Before introducing our algorithm, let us establish some key
definitions. The primary objective of the algorithm is to transform
a given CNF into an acyclic combinational structure while pre-
serving all logical constraints in the original CNF. Variables that
correspond to the inputs and outputs of this circuit are referred to



as primary input variables and primary output variables, respec-
tively. Variables representing the intermediate signals within the
circuit are called intermediate variables. With these definitions
in place, once a variable is identified as a primary input or
intermediate variable, it cannot be redefined as an output variable
in subsequent Boolean expressions, due to the acyclic nature of
the circuit.

The main challenge in this transformation is first to identify
sub-clauses corresponding to a Boolean expression and then to
derive that expression. To achieve this, we begin by reading the
first clause in the CNF. For each variable in the clause, if it
has not already been defined as a primary input or intermediate
variable, we treat it as a potential output of the clause or clauses
read so far. We then derive its Boolean expression based on
the clause or clauses (read so far) containing this variable in its
negated form, and similarly derive its complementary expression
from the clauses where the variable appears in its true form. If the
resulting Boolean expressions are indeed complements of each
other, we have successfully identified the Boolean expression
for the current set of clauses. If not, we proceed to the next
clause and repeat the process until the corresponding Boolean
expression is found. Once the Boolean expression is identified,
we designate its output variable as an intermediate variable.
Additionally, if any input variables in the derived Boolean
expression have not yet been classified as intermediate variables,
they are now recognized as primary input variables. In case
the resulting Boolean expression is identified to be a constant
Boolean function with its output being a constant value of
either 0 or 1, its output variable is recognized as a primary
output variable. The obtained Boolean expression is simplified
before adoption in the final circuit structure. For all Boolean
manipulations, such as simplification and complement checking,
we utilize the symbolic Boolean algebra system SymPy [39],
a Python library for symbolic mathematics. It is worth noting
that the resulting multi-level, multi-output Boolean function from
our transformation can be further optimized by leveraging other
techniques [40]–[42], for reducing the complexity of multi-level
logic circuits, potentially leading to even more compact Boolean
functions. Our transformation process is summarize in Algorithm
1.

To clarify the transformation process, let us revisit the clauses
in in Eq. (5). Treating x5 as a potential output variable, we derive
its Boolean expression from the clauses where x5 appears in its
negated form (i.e., (¬x4∨x107∨¬x5)∧(x4∨x108∨¬x5)). Since
¬x5 = 0 in these clauses, it becomes non-contributory, resulting
in the Boolean expression x5(x4, x107, x108) = (x107 ∧ x4) ∨
(x108 ∧ ¬x4). This is because we are determining the Boolean
expression for x5 = 1, and thus the remaining clauses containing
x5 in its true form are already satisfied and do not contribute to
the expression.

Similarly, we derive the complementary Boolean expression
using the clauses where x5 appears in its true form (i.e., (¬x4 ∨
¬x107∨x5)∧(x4∨¬x108∨x5)). In this case, x5 = 0 rendering it
non-contributory and resulting in ¬x5(x4, x107, x108) = (¬x107∧
x4) ∨ (¬x108 ∧ ¬x4). Since these two expressions are comple-
mentary, it confirms the validity of the Boolean expression with
the specified input and output variables. It is worth mentioning
that repeating this process for other variables as potential output
variables does not yield complementary expressions, thereby
invalidating the assumption for those cases.

During the transformation process, some sub-clauses may be

Algorithm 1 Pseudo Code of our Transformation Method

1: Input: A list of clauses C
2: Output: List of primary outputs PO, primary inputs PI ,

intermediate variables IV , and Boolearn expressions BE
3: SC = [] {List of sub-clauses}
4: for i = 1 to length(C) do
5: Append C[i] to SC
6: for each item v in SC do
7: if v /∈ PI and v /∈ IV then
8: f ← FindBooleanExpression(v, SC)
9: g ← FindBooleanExpression(¬v, SC)

10: if f = ¬g then
11: Append Simplify(f ) to BE
12: if f = True or f = False then
13: Append v to PO
14: else
15: Append v to IV
16: end if
17: for each item w in SC do
18: if w /∈ IV and w ̸= v then
19: Append w to PI
20: end if
21: end for
22: SC = []
23: break
24: end if
25: end if
26: end for
27: end for
28: Return PO,PI, IV,BE

under-specified, making them difficult to translate directly into
a Boolean expression. A simple example is an OR function
x3(x1, x2) = x1 ∨ x2, where the output is constrained to
1. The full description of the associated clauses would be
(¬x3 ∨x1 ∨x2)∧ (x3 ∨¬x1)∧ (x3 ∨¬x2)∧x3. However, since
x3 is equal to 1 in this case, these clauses can be simplified to
(x1 ∨ x2). In this simplified form, where the output variable is
not explicitly specified, we cannot directly extract the function
with its output constrained to 1. To handle such cases, if the
current clauses do not share variables with subsequent clauses,
we simplify these clauses to a Boolean expression as the result of
the transformation. The variables of these clauses are then treated
as input variables to the simplified Boolean expression, and an
auxiliary variable is assigned to the output, which is constrained
to 1.

After transforming all the clauses, we integrate the resulting
Boolean sub-expressions to construct a multi-level, multi-output
Boolean function that is equisatisfiable with the original CNF.
This function contains two types of paths: constrained paths and
unconstrained paths. Constrained paths are those that run from
primary inputs to primary outputs. The inputs along these paths
must be adjusted to satisfy the explicit constraints applied to
the primary output variables. Unconstrained paths originate from
primary inputs and terminate at intermediate variables. Since they
are not explicitly constrained to any values, any random initializa-
tion of their primary inputs will yield satisfying solutions for the
variables on these paths. Fig. 1(a) and 1(b) present an example of
a CNF and its corresponding circuit structure, produced through



CNF Ex. (Part 1)
p cnf 14 21
c x2(x1) = ¬x1

−1 −2 0
1 2 0
c x3(x2) = x2

−2 3 0
2 −3 0
c x4(x3) = x3

−3 4 0
3 −4 0
c x5(x4, x11, x12)

= (x4 ∧ x11)
∨(¬x4 ∧ x12)

−4 −11 5 0
−4 11 −5 0
4 −12 5 0
4 12 −5 0
c x7(x6) = x6

CNF Ex. (Part 2)
−6 7 0
6 −7 0
c x8(x7) = x7

−7 8 0
7 −8 0
c x9(x8) = ¬x8

−8 −9 0
8 9 0
c x5(x4, x11, x12)

= (x4 ∧ x11)
∨(¬x4 ∧ x12)

−9 −13 10 0
−9 13 −10 0
9 −14 10 0
9 14 −10 0
c x10 = 1
10 0

Transformer Multi-Level
Boolean Function

Embedding Layer

Loss
Calculation

PyTorch description of the CNF isntance
import torch.nn as nn

def AND(a, b):
re turn a * b

def OR(a, b):
re turn 1 - (1 - a) * (1 - b)

def NOT(a):
re turn 1 - a

c l a s s DUT(nn.Module):
def __init__(self):

super().__init__()

def forward(self, inputs):
x1,x11,x12,x7,x13,x14 =

inputs
x2 = NOT(x1)
x3 = x2
x4 = x3
x5 = OR(AND(x4, x11), AND(

NOT(x4), x12))
x7 = x6
x8 = x7
x9 = NOT(x8)
x10 = OR(AND(x9, x13), AND(

NOT(x9), x14))
outputs = x10

re turn outputs

x1

x2, x3, x4 x11

x12

x5

x7, x8
x6

x9
x13

x14

x10

(a)

(b) (c)

Figure 1: The overall workflow of our sampling approach is illustrated including (a) a CNF example with comments highlighted
in green, (b) its simplified multi-level, multi-output Boolean function in a circuit form for illustrative purposes with unconstrained
and constrained paths highlighted in blue and red, respectively, and (c) its corresponding PyTorch description.

our transformation method. The figures highlight two types of
paths: unconstrained paths in blue and constrained paths in red.
In this example, any random assignment to the primary input
variables x1, x11, and x12 will satisfy the sub-clauses associated
to the unconstrained path. Conversely, the primary input variables
for the constrained path, namely x6, x13, and x14, must be
carefully selected such that x10 is forced to be 1.

With the definitions in place, the SAT solving/sampling prob-
lem now becomes a task of finding the primary inputs in the con-
strained paths to the multi-level, multi-output Boolean function
resulting from the CNF transformation. Once the values of the
primary input variables are determined to satisfy the constraints
on the primary output variables, the intermediate variables can
be computed using the corresponding Boolean operators in the
function (see Fig. 1(c)).

To solve for the primary input variables in the constrained
paths, we use GD optimization. Specifically, we reformulate the
solving/sampling problem into a multi-output regression task,
where the objective is to learn the primary input variables based
on explicit constraints on the primary outputs and a differentiable
model that maps the inputs to the outputs. While the multi-level,
multi-output Boolean function fulfills the mapping requirements,
it is not differentiable in its discrete form. To address this, we
employ a probabilistic representation of logical operators such as
AND, OR, NOT, XOR, and XNOR, enabling differentiability in
the model as shown in Table I. Such a representation allows us
to relax the discrete operations into continuous ones.

With the probabilistic model derived from replacing the dis-
crete logical operators of the multi-level, multi-output Boolean
function with their probabilistic counterparts, we can now learn
satisfying primary input variables given the constraints on the
output variables. To find satisfying solutions, we define the
primary input variables a matrix V ∈ Rb×n, where n indicates the
number of primary input variables and b denotes the batch size.

Table I: The probabilistic representation of logical operators.

Operator Input Variable Output Variable Derivative w.r.t Input

NOT P1 Py = P1 = 1− P1
∂Py

∂P1
= −1

AND P1, P2 Py = P1 P2
∂Py

∂P1
= P2,

∂Py

∂P2
= P1

OR P1, P2 Py = 1− P1 P2
∂Py

∂P1
= P2,

∂Py

∂P2
= P1

XOR P1, P2 Py = P1 P2 + P1 P2
∂Py

∂P1
= 1− 2P2,

∂Py

∂P2
= 1− 2P1

XNOR P1, P2 Py = P1 P2 + P1 P2
∂Py

∂P1
= 2P2 − 1,

∂Py

∂P2
= 2P1 − 1

Since our continuous multi-level, multi-output Boolean function
takes real values between 0 and 1 in a form of probability, we
convert the primary input variables into probabilities using the
sigmoid function σ(·), such that:

P = σ(V), (6)

where P ∈ [0, 1]b×n represents the input probabilities fed into
the model. We refer to this conversion process as a form of
continuous embedding, as it transforms the input space into a
continuous probability space, allowing the model to interpret the
inputs probabilistically. The model’s primary outputs are then
computed as:

Y = F(P), (7)

where F : [0, 1]b×n → [0, 1]b×m represents the probabilistic
multi-level, multi-output Boolean function. The matrix Y ∈
[0, 1]b×m holds the m primary output variables across the b data
batches.

To optimize the inputs, we define an ℓ2-loss function L that
measures the difference between the computed outputs Y and the
target output matrix T ∈ 0, 1b×m:

L =
∑
b,m

||Y− T||22 . (8)



Table II: The runtime performance of our sampling method against UNIGEN3, CMSGEN and DIFFSAMPLER in terms of unique
solution throughput, where each sampler is tasked to generate a minimum of 1000 solutions within a timeout (TO) of 2 hours.

SAT # Primary # Primary # Variables # Clauses Throughput (# Unique Solutions per Second )
Instance Inputs Outputs (CNF) (CNF) This work (Speedup) UNIGEN3 CMSGEN DIFFSAMPLER

or-50-10-7-UC-10 50 4 100 254 5,974,780.8 (79.6×) 64.7 36, 693.5 75, 040.1
or-60-20-10-UC-10 60 5 120 305 4,777,137.7 (86.0×) 81.7 33, 987.0 55, 521.3

or-70-5-5-UC-10 69 7 140 357 2,468,613.4 (77.8×) 94.5 31, 732.4 16, 035.1
or-100-20-8-UC-10 98 10 200 510 1,707,142.3 (51.6×) 43.4 22, 951.7 33, 175.3

75-10-1-q 83 1 452 443 478,723.0 (42.0×) 1.6 11, 281.8 156.1
75-10-10-q 79 1 456 439 2,075,175.0 (197.1×) 1.6 10, 527.4 251.8
90-10-1-q 51 1 432 411 2,809,981.5 (251.7×) 1.0 11, 162.5 227.9
90-10-10-q 31 1 428 391 3,567,035.2 (326.9×) 1.4 10, 913.0 57.9

s15850a_3_2 600 3 10, 908 24, 476 20,267.1 (47.1×) 0.4 430.4 TO
s15850a_7_4 600 7 10, 926 24, 552 14,930.5 (34.1×) 0.5 437.9 TO

s15850a_15_7 600 15 10, 995 24, 836 14,177.1 (33.6×) 0.5 422.2 TO

Prod-8 293 2 14, 952 74, 702 994.9 (523.6×) 1.9 0.2 TO
Prod-20 677 2 37, 320 186, 734 139.1 (347.8×) 0.4 TO TO
Prod-32 1061 2 59, 688 298, 766 96.0 (480×) 0.2 TO TO

By minimizing this loss function through GD, the primary input
variables (i.e., V) are iteratively updated. Upon convergence, the
b solutions are determined by converting the soft input values
(i.e., V) into hard binary values (i.e., Ṽ ∈ 0, 1b×n).

In gradient descent optimization, the objective is to compute
the derivative of the loss function with respect to each primary
input variable associated with the constrained paths. This can
be achieved using the chain rule, leveraging the derivatives of
the logical operators presented in Table I. For instance, in the
constrained path highlighted in red in Fig. 1(b), the derivative of
the loss function with respect to the primary input variable x13

can be expressed as follows:

∂L
∂x13

=
∂L
∂x10

· ∂x10

∂x13
= 2 ·(x10−1) ·(1−x9 ·x14) ·(1−x9). (9)

For simplicity, we will exclude the embedding process from our
calculations in this example. With the computed derivative, the
value of x13 is updated using the following equation:

x13 = x13 − γ · ∂L
∂x13

, (10)

where γ represents the learning rate.
The overall workflow is illustrated in Fig. 1. Our method

integrates a parser that describes the probabilistic multi-level,
multi-output Boolean function in PyTorch. Since each solution
is processed and learned independent from others, our approach is
highly parallelizable and benefits from GPU acceleration, enables
fast and scalable sampling by processing multiple data batches
simultaneously.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our sam-
pling technique. To accomplish this, we developed a prototype
of our approach using PyTorch, an open-source machine learning
library that integrates Torch’s powerful GPU-optimized backend
with a Python-friendly interface. For a thorough assessment, we
evaluated 60 problem instances of varying sizes from a public
domain benchmark suite. The experiments were performed on a
system featuring an Intel Xeon E5-2698 processor running at 2.2
GHz and 8 NVIDIA V100 GPUs, each with 32 GB of memory.
We present the runtime performance of our method in terms of
throughput, defined as the number of unique and valid solutions
generated per second, using a single NVIDIA V100 GPU. GD
was employed as the optimizer during the training phase, with
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Figure 2: A log-log plot showing the runtime in milliseconds
versus the number of unique satisfying solutions across all
60 instances from the sampling benchmark. The dotted lines
represent the performance trends for each sampler.

the learning rate set to 10 and the number of iterations to 5. We
varied the batch size between 100 and 1, 000, 000, based on the
specific instances tested.

We compare the performance of our sampling method with
leading SAT sampling methods, specifically UNIGEN3 [35],
CMSGEN [36], and DIFFSAMPLER [37]. These samplers operate
directly on the CNF of SAT instances, whereas our method
handles the simplified multi-level, multi-output Boolean expres-
sions derived from transforming their logical constraints. Both
UNIGEN3 and CMSGEN are highly optimized implementations
written in C++, while DIFFSAMPLER is a Python-based, GPU-
accelerated SAT sampler built using the high-performance JAX
library. UNIGEN3 and CMSGEN were tested on a server-grade
Intel Xeon Gold 6134 CPU with 3.2 GHz clock rate and 1TB
of RAM. DIFFSAMPLER was run on a system featuring an Intel
Xeon E5-2698 processor at 2.2 GHz and 8 NVIDIA V100 GPUs,
each equipped with 32 GB of memory.

A. Runtime Performance

Table II presents the sampling performance of our method in
terms of throughput for a representative subset of 14 instances
from the sampling benchmark. Throughput is defined as the
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Figure 3: (Left) Learning curve showing the number of unique
satisfying solutions over iterations. (Right) Log-log plot of GPU
memory usage (MB), measured by “nvidia-smi”, across different
batch sizes for a subset of 4 CNF instances.

number of unique solutions generated per second. Each sampler
is required to produce at least 1, 000 solutions within a maximum
runtime of 2 hours. The table shows the best throughput results
obtained from each sampler. Our method consistently outper-
forms state-of-the-art samplers in unique solution throughput,
achieving speedups ranging from 33.6× to 523.6×, depending
on the under-test SAT instances. This substantial performance
improvement is due to two key factors. First, many logical
constraints in the CNF representation are satisfied during the
transformation, where sub-clauses are converted into simplified
Boolean sub-expressions. This transforms the SAT sampling task
into solving constrained paths in a simplified, multi-level, multi-
output Boolean expression, significantly reducing the number of
logical operations. Second, by framing the sampling problem
as a learning task, where the computation of each sample
is independent, GPU acceleration can be leveraged to further
enhance runtime performance.

Fig. 2 demonstrates how the runtime performance of each
sampler varies as the number of unique solutions increases.
A critical aspect of this comparison is the overall efficiency
of our sampling method relative to UNIGEN3, CMSGEN, and
DIFFSAMPLER. This is particularly evident when sampling larger
quantities of solutions, where the runtime shows only a slight
increase as the solution count grows.

B. Learning Dynamics

We analyze the learning dynamics of our sampling method,
focusing on hyper-parameters such as iterations and batch size.
Fig. 3 shows the progress in generating unique solutions over
10 iterations, where the number of unique solutions increases
with more iterations. Increasing the batch size improves runtime
performance by leveraging GPU parallelism, but at the cost of
higher memory usage. The GPU memory demand, as shown in
Fig. 3, grows with both the complexity of the Boolean function
derived from the CNF transformation and the batch size. In
scenarios requiring a high number of unique samples with limited
GPU memory, the practical solutions are to either run more
iterations, reducing throughput, or use GPUs with larger memory.

C. Ablation Study

In this section, we analyze the extent of GPU acceleration
by comparing the runtime performance of our sampler between
the GPU and CPU, as presented in Fig. 4. The data shows
that GPU execution results in an average speedup of 6.8× over
CPU execution. Additionally, we provide the rate of reduction
in the number of bit-wise operations due to the transformation,
measured as the number of operations in the CNF divided by the
number of operations in the resulting multi-level, multi-output
Boolean function in terms of 2-input gate equivalents in Fig. 4,
demonstrating an average reduction of 4.2×. Finally, we present
the transformation time required to convert CNF into a multi-
level, multi-output Boolean function in Fig. 4. This conversion
time is comparable to that of conversion time of SAT applications
represented in higher-level logical formats into CNF. Given the
superior runtime performance of our sampler, we suggest that
SAT applications in high-level logical formats could be directly
transformed into a multi-level, multi-output Boolean function.

V. RELATED WORK

Numerous SAT formula sampling methods have been explored
in prior research. For example, UNIGEN3 provides approxi-
mate uniformity guarantees [43], while both CMSGEN and
QUICKSAMPLER [1] emphasize sampling efficiency. Other stud-
ies have also examined the use of data-parallel hardware for SAT
solving, primarily focusing on parallelizing CDCL and various
heuristic-based algorithms [44], [45]. Some recent efforts, such
as MATSAT [46] and NEUROSAT [47], have attempted to frame
SAT instances as constrained numerical optimization problems.
However, these methods have struggled to demonstrate the ef-
fectiveness of GPU-accelerated formula sampling on large and
diverse standard benchmarks, typically focusing on small, ran-
dom instances. Recently, a new differentiable sampling technique
called DIFFSAMPLER was proposed in [37], enabling GPU-
accelerated SAT sampling on standard benchmarks and achieving
competitive runtime performance compared to UNIGEN3 and
CMSGEN. DEMOTIC is another GPU-accelerated, differentiable
sampler specifically designed for CircuitSAT problems in CRV.
It operates directly on circuit structures described in hardware
description languages such as Verilog [48].

There have been only a few attempts in the literature that
focus solely on extracting circuit structure from CNF descriptions
[38], [49], primarily to recover information lost during the
Tseitin transformation. These approaches typically rely on pattern
matching based on predefined gate structures. In contrast, our
transformation method is more general, capable of restoring any
combination of logical gates from CNF, and, more importantly,
it enables high-throughput SAT sampling using GPUs.

VI. CONCLUSION

In this paper, we have introduced a novel GPU-accelerated
approach for SAT sampling that significantly outperforms tra-
ditional methods. By transforming CNF representations into
simplified multi-level, multi-output Boolean functions and em-
ploying gradient-based optimization, our method reinterprets
SAT as a supervised multi-output regression task. This enables
parallel, bit-wise operations across tensor elements, leading to
substantial runtime improvements. With speedups ranging from
33.6× to 523.6× compared to existing heuristic samplers, our
extensive evaluation on 60 benchmark instances demonstrates
the effectiveness and efficiency of this new technique for SAT
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Figure 4: Comparison of GPU speedup over CPU (left), reduction
rate of bit-wise operations in 2-input gate equivalents (middle),
and transformation time from CNF to a simplified multi-level,
multi-output Boolean function (right) for a subset of 4 instances.

sampling. This performance gain is primarily attributed to the
GPU’s acceleration over CPU execution and the reduction in the
number of logic operations resulting from our transformation.
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