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1. INTRODUCTION

Gemmini is a systolic-array based DNN accelerator hardware gen-
erator. The Gemmini accelerator code, not including the Rocket
core which it interfaces with, is comprised of 15,664 lines of
Chisel HDL, split across 55 files and many more modules [2].
For open-source developers and users, understanding Gemmini’s
microarchitecture and codebase represents a major obstacle to de-
bugging and optimization. We present a Gemmini implementation
of our hardware-based event tagging and tracking tool with visu-
alization for debugging, education, and performance analysis.

2. MOTIVATION

Gemmini is highly complex system with custom RISC-V ISA
based RoCC instructions. It has a DMA, a store, load, and ex-
ecute controller, scratchpad, accumulator, mesh systollic array,
transposer, reservation station, Im2Col unit, and scaling arithmetic
units. It also has hardware controllers for decoding CISC matmul
and convolution commands into RISC instructions, giving the pro-
grammer more options to use coarse-grained or fine-grained com-
mands. This complexity makes for an exceptionally difficult de-
bugging process. Instructions are both received from the CPU and
generated dynamically by Gemmini’s internal FSMs. Instructions
are complex with 64+64+32 bits of encoding space. Each instruc-
tion is responsible for spawning many more possible loads and
stores with data being sent to different functional units, depending
on the configuration.

Currently, debugging and developing on Gemmini requires an
engineer to parse through simulation waveforms and thus, a highly
detailed knowledge of the microarchitecture to track each signal.
There is also no instruction diassembler like Spike for RISC-V in-
structions, which forces developers to hand splice addresses and
correlate function codes with instruction dumps to track the in-
struction flow. There is no easy way to visualize where instructions
and data go inside Gemmini. Lastly, with Gemmini’s complex
instruction handling, it becomes quite difficult to follow how in-
structions are decoded. For all but the most experienced Gemmini
developers, these barriers slow down code optimization and any
future modifications or improvements to the microarchitecture.

3. PRIOR WORK

We were inspired by the Gem5 O3 pipeline viewer, which visual-
izes out-of-order CPU instruction execution[4]. We use the Konata
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instruction pipeline visualizer for our frontend. This pipeline vi-
sualizer was also designed for Gem5 processors [5]. [1] proposed
a similar hardware token passing method to tracking event depen-
dencies, which they used to identify critical instruction paths. The
authors were able to use the instruction criticality data to reduce
resource contention in instruction scheduling.

We previously worked on annotating the Rocket and Sodor in-
order RISC-V cores. Rocket and Sodor have simpler instruction
flow.

4. IMPLEMENTATION DETAILS

Our microarchitectural event tracking tool is composed of three
parts: Chisel tagging code, a Python graph processing script, and
the frontend pipeline visualizer.

Figure 1: Tool Workflow

4.1. Chisel GenEvent

The Chisel tagging code is comprised of a GenEvent object, the
event annotations, and related token-passing hardware in the Gem-
mini microarchitecture. The GenEvent object creates a small snip-
pet of hardware code and includes a Chisel printf, an unique ID
generator, and a cycle counter. The GenEvent can be called like a
function in the Gemmini RTL and can be conditioned with Chisel’s
when, elsewhen, and otherwise clauses. On each cycle that the
GenEvent is "called" or enabled, it prints a JSON string with the
event name, a unique id, parent event, cycle count, and an optional
data field. A parent event ID can be optionally input into the Gen-
Event and is used to connect two events such that the event’s ID
and its parent’s ID can be used to generate an edge in the event
graph. The GenEvent then outputs the unique event ID that can be
passed through the hardware to the next GenEvent location in the
microarchitecture. The event name field specifies the label for the
location or microarchitecture event that we are capturing. The data
field can be used to print values of wires or registers in the design
such as tags, IDs, or addresses. GenEvent also allows developers
to specify the event ID rather than having it generate a unique ID.
This can be useful if there already exists IDs in the microarchitec-
ture that can be used to uniquely identify event paths. For example,
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Figure 2: Gemmini Annotation Locations

the rob_id in Gemmini is used to track commands throughout their
execution and is used in our implementation when the Chisel logic
is not easily modified to support tag/token passing. Figure 8 in the
Appendix lists the GenEvent and EventTag Chisel code.

4.1.1. Gemmini Microarchitecture

We added GenEvent annotations to critical control flow and data-
path locations in Gemmini. In Controller.scala, we annotated the
IO where Gemmini RoCC commands are received from the CPU,
where they are turned into fine-grain instructions by the FSMs,
reservation station issue, load, execute, and store controller issue
from the reservation station and finally, instruction retire from the
three controllers. In ExecuteController.scala, we annotated when
the systolic array was flushed or fired, scratchpad and accumulator
read/writes for the A, B, D matrices, mesh data inputs, and Im2Col
requests.

To enable event tag passing between different areas of RTL,
we at times had to modify Chisel bundles and data structures to
store and pass tags (See Figure 9 of the Appendix for an exam-
ple). For instance, in Figure 10 of the Appendix, we have dif-
ferent events for each matrix and scratchpad bank number for
scratchpad reads. The generated event tags are enqueued onto
mesh_cntl_signals_q which is eventually passed to Figure 11 of
the Appendix, where the mesh input fire event is different de-
pending on the matrix and where the data originated, with the
parent event set to the pipeline_tag. This event tag passing is
important to reconstruct the event graph later on. The code for
annotated Gemmini can be found at https://github.com/
kevinhe5/gemmini/tree/pipeline

4.2. Python Graph Processing

The purpose of the Python script is to take the Verilator or VCS
log generated during RTL simulation, build a graph of events, and
parse it into an output file compatible with the pipeline visualizer.
We named the script iris.py.

The script is adaptable to other microarchitectures and takes a
JSON configuration as input. Figure 12 shows the config file used
for Gemmini. The config specifies event names, start stages, split
stages, and end stages. Event names correspond to the eventName
parameter of the Chisel GenEvents. Start stages specify where an
instruction can originate; for Gemmini, these stages are CMD in
the controller.scala, LOOP_CONV, and LOOP_MATMUL which
refer to the LoopConv and LoopMatmul CISC instruction FSMs.

End stages specifies where an instruction can retire. In a CPU
pipeline, this is could be the writeback stage. For Gemmini, in-
structions can end up in multiple locations. For example, some
config instructions only go to configure the LoopConv and Loop-
Matmul modules. Controller config instructions are sent to the ex-
ecute, store, and load controllers, where they set the internal con-
troller states for future execution. These instructions are retired
almost immediately. Move-in, move-out, preload, and compute
instructions are much longer latency and are retired in LD_RET,
EX_RET, and ST_RET stages when the respective controllers send
a completed signal to the main controller.

We also decode Gemmini instructions in iris.py. RoCC in-
structions contain a 32 bit instruction and two 64 bit register val-
ues: rs1 and rs2. These bits are used for setting the number of
rows, columns, strides, addresses, and various other configuration
parameters in Gemmini. Our GenEvent prints out the raw instruc-
tion encoding, which we mask in iris.py to provide the instruction
type and its parameters in the event viewer. Based on the various
instruction decodings, the script is coded to fetch the various fields
of all the different instructions, making our system able to detect
fine-grained instruction flows.

We construct the event graph with the NetworkX [3]. Since
each event output from the GenEvent has a parent ID and its own
event ID, we can draw an edge between the event and its parent.
However, we must first pre-process the event log from our RTL
simulator. Figure 13 shows a small portion of an output from VCS
for scratchpad reads events and the related scratch pad rows be-
ing sent to the mesh. Since the GenEvents allow users to spec-
ify their own event IDs and allow the event ID to be the same as
the parent event ID, we must first uniquify the event IDs. Event
IDs that are the same are given a unique ID while preserving the
relationship/edge between the two adjacent events by sorting by
cycle time. For example, as an instruction passes from the reserva-
tion station to the execute controller to the spatial array mesh and
retires, the ROB ID is used as the event ID for all the events. Be-
cause, each event will occur after the other, they will have different
cycle counter values. Thus, their uniqified IDs construct edges in
the order of execution.

Once the graph is constructed, we perform depth first search
through the graph to extract the instruction paths. Each event is
a graph node, containing the corresponding cycle counter value
and data field. From these paths, we can generate the Konata log,
where each path goes on one line in the viewer.

The code for the iris.py can be found at https://github.
com/ncastaneda02/uarchdb/tree/Gemmini. The
JSON config file for Gemmini is gemmini.json. An example
Konata log for Gemmini can be found in gemmini.log.

4.3. Pipeline Viewer

We created a custom fork of the Konata instruction pipeline visual-
izer. This fork contains some quality of life changes we made such
as freezing the vertical height when zooming to make the experi-
ence similar to other waveform viewers. Konata ingests the Kanata
Log Format file generated from the previous step. The fork can be
found at https://github.com/victorhu3/Konata.

5. RESULTS

Refer to Figure 5 of the Appendix for an example of a weight sta-
tionary tiled matmul workflow being visualized. The blue bars

https://github.com/kevinhe5/gemmini/tree/pipeline
https://github.com/kevinhe5/gemmini/tree/pipeline
https://github.com/ncastaneda02/uarchdb/tree/Gemmini
https://github.com/ncastaneda02/uarchdb/tree/Gemmini
https://github.com/victorhu3/Konata
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represent the instructions sitting in the ROB and the green bars
are when they reach their respective controllers. Figure 7 is an
example of a convolution workflow. In Figure 6, the instruction
decoding feature is overlaid.

The pipeline viewer allows the user to see interesting interac-
tions in Gemmini. In Figure 3, an instruction waits in the reserva-
tion station before it can be issued to the execute controller, until
the load instruction returns. Konata allows for visualizations of
dependencies that would have otherwise been hard to identify in a
waveform.

Figure 3: Execute Stalling

Using the Python script, we also were able to generate a top-
down visualization of graph of events with GraphViz. The roots of
each tree are instructions being issued by the host processor.

Figure 4: GraphViz Output

Since we are ultimately constructing a graph, our GenEvent
tagging solution allows for designers to choose the level of ab-
straction they want to annotate in the microarchitecture. We
mostly painted broad strokes, annotating the largest controllers and
most common memory transactions; however, a more experienced
Gemmini developer should have no difficulty with annotating the
most minutia of Gemmini signals and dependencies. NetworkX is
extensible to very large graphs, and there was no noticeable delay
with the iris.py script for our event paths.

6. CONCLUSION

In this paper, we introduced a tool to annotate and visualize events
for Gemmini. We hope that this tool will speedup debugging, en-
courage open-source development, and provide valuable insights
for the Gemmini microarchitecture.

7. CONTRIBUTIONS

Kevin He annotated Gemmini with GenEvent tags and worked
with Nico to design the iris.py graph parsing script.

Victor Hu helped annotate Gemmini, improved the iris.py
script, and worked on quality of life improvements of the Konata
pipeline viewer.

Ryan Ma wrote the Gemmini instruction dissassembler in
iris.py.

We thank Nico Castaneda, Jerry Zhao, and Dima Nikiforov
for their help and advice on this project.
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8. APPENDIX

8.1. Reproducibility

For our development of the tool, we used the GemminiRocketConfig config and tiled_matmul_ws_At-baremetal test in Chipyard:
make run-binary CONFIG=GemminiRocketConfig BINARY=/tools/designs/kevinhe/chipyard6/generators/gemmini/software/gemmini-
rocc-tests/build/bareMetalC/tiled_matmul_ws_At-baremetal

To run the Python processing script, ensure that the pandas, numpy, and networkx packages are installed, then:
python3 iris.py –log_file [path/to/VCS_out_file] –schema_file gemmini.json –output_file gemmini.log –verbose –gemmini

This will output the Konata log to gemmini.log. Once Konata is launched, the log file can be drag and dropped in for visualiza-
tion.

Figure 5: tiled_matmul_ws_At Konata View
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Figure 6: Konata View

Figure 7: conv-baremetal Konata View
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8.2. Code Snippets

1 object GenEvent {
2 var instance_ctr: Int = 0
3 def apply(eventName: String, data: UInt, parent: Option[EventTag], id: Option[UInt] = None): EventTag

= {
4 var new_id = Wire(UInt(64.W))
5 val id_ctr = RegInit(0.U(32.W))
6 id_ctr := id_ctr + 1.U
7 new_id := Cat(instance_ctr.asUInt(32.W), id_ctr)
8 if (parent.isDefined) {
9 if (id.isDefined) {

10 printf(cf"{\"id\": \"0x${id.get}%x\", \"parents\": \"0x${parent.get.id}%x\", \"cycle\": \"
$id_ctr\", \"event_name\": \"$eventName\", \"data\": \"0x$data%x\"}\n")

11 } else {
12 printf(cf"{\"id\": \"0x$new_id%x\", \"parents\": \"0x${parent.get.id}%x\", \"cycle\": \"$id_ctr

\", \"event_name\": \"$eventName\", \"data\": \"0x$data%x\"}\n")
13 }
14 } else {
15 if (id.isDefined) {
16 printf(cf"{\"id\": \"0x${id.get}%x\", \"parents\": \"None\", \"cycle\": \"$id_ctr\", \"

event_name\": \"$eventName\", \"data\": \"0x$data%x\"}\n")
17 } else {
18 printf(cf"{\"id\": \"0x$new_id%x\", \"parents\": \"None\", \"cycle\": \"$id_ctr\", \"event_name

\": \"$eventName\", \"data\": \"0x$data%x\"}\n")
19 }
20 }
21 instance_ctr += 1
22 return EventTag(new_id)
23 }
24 }
25 class EventTag extends Bundle {
26 val id = UInt(64.W)
27 }
28 object EventTag {
29 def apply(id: UInt): EventTag = {
30 val tag = Wire(new EventTag)
31 tag.id := id
32 return tag
33 }
34 }

Figure 8: GenEvent and EventTag Chisel code

1 class ComputeCntlSignals extends Bundle {
2 ...
3 //For pipeline viewer
4 val pipeline_tag_a = new EventTag
5 val pipeline_tag_b = new EventTag
6 val pipeline_tag_d = new EventTag
7 }

Figure 9: New EventTag fields for the ComputeCntlSignals bundle in ExecuteController.scala
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1 when(io.srams.read(i).req.fire) {
2 when (read_a && a_ready) {
3 mesh_cntl_signals_q.io.enq.bits.pipeline_tag_a := GenEvent(s"SP_RD_A$i", io.srams.read(i).req

.bits.addr, Some(EventTag(cmd.bits(preload_cmd_place).rob_id.bits)))
4 }
5 when (read_b && b_ready) {
6 mesh_cntl_signals_q.io.enq.bits.pipeline_tag_b := GenEvent(s"SP_RD_B$i", io.srams.read(i).req

.bits.addr, Some(EventTag(cmd.bits(preload_cmd_place).rob_id.bits)))
7 }
8 when (read_d && d_ready) {
9 mesh_cntl_signals_q.io.enq.bits.pipeline_tag_d := GenEvent(s"SP_RD_D$i", io.srams.read(i).req

.bits.addr, Some(EventTag(cmd.bits(preload_cmd_place).rob_id.bits)))
10 }
11 }

Figure 10: GenEvent tagging code for Scratchpad reads in the ExecuteController.scala. For these GenEvents, the parent tag is the rob_id
and its own event id is a uniquely generated tag

1 //For pipeline viewer
2 when(mesh.io.a.fire) {
3 when(cntl.a_garbage) {
4 }.elsewhen(cntl.a_unpadded_cols === 0.U) {
5 GenEvent("A_0_PAD", 0.U, Some(EventTag(cntl.rob_id.bits)))
6 }.elsewhen(cntl.im2colling) {
7 GenEvent("A_IM2COL", 0.U, Some(cntl.pipeline_tag_a))
8 }.elsewhen(cntl.a_read_from_acc) {
9 GenEvent("A_ACC->MESH", cntl.a_bank_acc, Some(cntl.pipeline_tag_a))

10 }.otherwise {
11 GenEvent("A_SP->MESH", cntl.a_bank, Some(cntl.pipeline_tag_a))
12 }
13 }
14

Figure 11: GenEvent tags for mesh input fires corresponding to Scratchpad read GenEvents in the previous figure. The GenEvent IDs from
the previous figure are passed as the parent ID in the above GenEvents to construct a causal relationship where after a row is read from the
Scratchpad, it is sent into the mesh.

1 {
2 "event_names": ["CMD", "LOOP_CONV", "LOOP_MM", "ROB_ISSUE", "LD_ISSUE", "ST_ISSUE", "EX_ISSUE", "

ST_RET",
3 "LD_RET", "EX_RET", "MESH_FIRE", "A_GARBAGE", "B_GARBAGE", "D_GARBAGE", "A_0_PAD",

"B_0_PAD", "D_0_PAD",
4 "A_ACC->MESH", "B_ACC->MESH", "D_ACC->MESH", "A_SP->MESH", "B_SP->MESH", "D_SP->

MESH", "ACC_WR_0",
5 "ACC_WR_1", "SP_RD_A0", "SP_RD_D1", "LOOP_MM_CMD"],
6 "event_types": ["inst_bytes", "bytes", "bytes", "inst_bytes", "bytes", "bytes", "bytes", "bytes", "

bytes", "bytes",
7 "bytes", "bytes", "bytes", "bytes", "bytes", "bytes", "bytes", "bytes", "bytes", "

bytes",
8 "bytes", "bytes", "bytes", "bytes", "bytes", "bytes", "bytes", "bytes"],
9 "start_stages": ["CMD", "LOOP_CONV_CMD", "LOOP_MM_CMD"],

10 "split_stages": ["CMD", "LOOP_CONV", "MM_LOOP"],
11 "end_stages": ["ST_RET", "LD_RET", "EX_RET", "ST_ISSUE", "LD_ISSUE", "LOOP_MM", "LOOP_CONV", "A_ACC

->MESH",
12 "B_ACC->MESH", "D_ACC->MESH", "A_SP->MESH", "B_SP->MESH", "D_SP->MESH", "A_0_PAD",

"B_0_PAD", "D_0_PAD", "ACC_WR_0", "ACC_WR_1"]
13 }
14

Figure 12: Iris.py Config JSON for Gemmini Stages
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1 {"id": "0x14", "parents": "0x0000000000000014", "cycle": " 275062", "event_name": "MESH_FIRE", "data
": "0x15200000042018140"}

2 {"id": "0x0000001d00043276", "parents": "0x0000000700043271", "cycle": " 275062", "event_name": "
A_SP->MESH", "data": "0x0"}

3 {"id": "0x0000000c00043277", "parents": "0x0000000000000014", "cycle": " 275063", "event_name": "
SP_RD_D1", "data": "0xfde"}

4 {"id": "0x0000002300043277", "parents": "0x0000000c00043272", "cycle": " 275063", "event_name": "
D_SP->MESH", "data": "0x1"}

5 {"id": "0x0000000700043278", "parents": "0x0000000000000014", "cycle": " 275064", "event_name": "
SP_RD_A0", "data": "0x002"}

6 {"id": "0x0000000c00043278", "parents": "0x0000000000000014", "cycle": " 275064", "event_name": "
SP_RD_D1", "data": "0xfdd"}

7 {"id": "0x0000001d00043278", "parents": "0x0000000700043273", "cycle": " 275064", "event_name": "
A_SP->MESH", "data": "0x0"}

8 {"id": "0x0000000700043279", "parents": "0x0000000000000014", "cycle": " 275065", "event_name": "
SP_RD_A0", "data": "0x003"}

9 {"id": "0x0000000c0004327b", "parents": "0x0000000000000014", "cycle": " 275067", "event_name": "
SP_RD_D1", "data": "0xfdc"}

10 {"id": "0x000000070004327c", "parents": "0x0000000000000014", "cycle": " 275068", "event_name": "
SP_RD_A0", "data": "0x004"}

11 {"id": "0x0000000c0004327c", "parents": "0x0000000000000014", "cycle": " 275068", "event_name": "
SP_RD_D1", "data": "0xfdb"}

12

Figure 13: Snippet from VCS output from GenEvents
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