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ABSTRACT
Efficient sampling of satisfying formulas for circuit satisfiability
(CircuitSAT), a well-known NP-complete problem, is essential in
modern front-end applications for thorough testing and verification
of digital circuits. Generating such samples is a hard computational
problem due to the inherent complexity of digital circuits, size
of the search space, and resource constraints involved in the pro-
cess. Addressing these challenges has prompted the development
of specialized algorithms that heavily rely on heuristics. However,
these heuristic-based approaches frequently encounter scalability
issues when tasked with sampling from a larger number of solu-
tions, primarily due to their sequential nature. Different from such
heuristic algorithms, we propose a novel differentiable sampler for
multi-level digital circuits, called Demotic, that utilizes gradient
descent (GD) to solve the CircuitSAT problem and obtain a wide
range of valid and distinct solutions. Demotic leverages the circuit
structure of the problem instance to learn valid solutions using GD
by re-framing the CircuitSAT problem as a supervised multi-output
regression task. This differentiable approach allows bit-wise opera-
tions to be performed independently on each element of a tensor,
enabling parallel execution of learning operations, and accordingly,
GPU-accelerated sampling with significant runtime improvements
compared to state-of-the-art heuristic samplers. We demonstrate
the superior runtime performance of Demotic in the sampling
task across various CircuitSAT instances from the ISCAS-85 bench-
mark suite. Specifically, Demotic outperforms the state-of-the-art
sampler by more than two orders of magnitude in most cases.

KEYWORDS
Circuit Satisfiability, Gradient Descent, Multi-level Circuits, Verifi-
cation, and Testing.
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1 INTRODUCTION
Circuit satisfiability (CircuitSAT) solving is an integral part of test-
ing and verification of digital circuits in modern front-end applica-
tions such as logic rewriting, false path analysis, property checking,
logic synthesis and equivalence checking [6, 22, 23, 30, 33]. Cir-
cuitSAT samplers play a crucial role in generating diverse samples
from the solution space, aiding in validation, analysis, and opti-
mization of digital circuit designs [9]. Exhaustive exploration and
the creation of diverse solutions are essential to guaranteeing that
the design fulfills its functional requirements and operates cor-
rectly across different scenarios. Consequently, numerous sampling
techniques have been developed to detect edge cases and outliers,
ensure representativeness, bolster robustness, and promote the
broad applicability of findings [10].

High-throughput sampling is fundamental in the realm of Cir-
cuitSAT, playing a vital role in various critical tasks such as con-
strained random verification (CRV) [17]. Its primary function lies
in boosting efficiency and scalability by enabling swift exploration
of vast solution spaces, which is especially crucial when dealing
with complex digital circuits containing numerous inputs, outputs,
and intermediate signals. Moreover, it expands coverage across so-
lution spaces, assisting in the detection of uncommon solutions and
intricate edge cases inherent in CircuitSAT problems. Furthermore,
high-throughput sampling enhances statistical reliability by pro-
ducing larger sample sizes, thereby reducing sampling variability
in CircuitSAT formula analysis.

A common approach for solving the CircuitSAT problem and
obtaining diverse solutions involves transforming the CircuitSAT
problem into a Boolean Satisfiability (SAT) problem, then employ-
ing robust and advanced solvers to solve it effectively [15]. More
precisely, the CircuitSAT solving process begins with the formu-
lation of the logical constraints of a digital logic into a Boolean
formula, typically represented in conjunctive normal form (CNF).

https://doi.org/10.1145/3658617.3697760
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ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Ardakani et al.

This formula encodes the functionality of the underlying circuits
into a set of Boolean clauses according to the interconnections
between the circuit’s inputs, outputs and internal signals, ensuring
that the resulting CNF accurately represents the original circuit’s
behavior [32].

The conversion process can sometimes be complex and compu-
tationally intensive, especially for large circuits. In some cases, the
resulting CNF might not always be compact due to different fac-
tors such as the size of the circuit and the number of intermediate
variables. For instance, circuits containing many gates or compo-
nents may result in a large CNF since each gate or component
can potentially introduce additional variables and clauses. The in-
termediate variables can also introduce additional variables and
clauses, contributing in the size of the resulting CNF. This increase
in complexity of CNF can impact the efficiency of SAT solvers.

SAT solvers employs a variety of techniques to search for a satis-
fying assignment to the variables in the CNF. Modern SAT solvers
[4, 11, 24] often utilize conflict-driven clause learning (CDCL) algo-
rithm [20, 21] which heavily relies on heuristics such as conflict-
driven backtracking and clause learning. Theses heuristics help
guide the search process of CDCL for a satisfying assignment effi-
ciently. Due to the sequential nature of these heuristics and their
reliance on branching and backtracking, current state-of-the-art
(SOTA) SAT solvers are executed on CPUs. Accordingly, SOTA SAT
samplers, which integrate a SAT solver as part of their algorithms,
depend on a sequential process and are also optimized for execution
on CPUs.

GPU acceleration has demonstrated substantial throughput per-
formance advantages across diverse applications especially in ma-
chine learning [19]. In general, algorithms that exhibit parallelism
and can be decomposed into independent tasks are generally suit-
able for GPU acceleration. This appears to align with the require-
ments for generating various satisfying solutions to the CircuitSAT
problem, if there was a sampling method performing regular and
data-parallel computations. In addition to parallelism, introducing a
samplingmethod that operates directly on circuits by leveraging the
spatial and temporal dimensions of digital computations—without
converting to CNF—is crucial, as the CNF conversion process may
not consistently produce the most optimal or compact representa-
tion. To this end, we introduce a novel differentiable sampler for
multi-level digital circuits, called Demotic 1, that utilizes gradi-
ent descent (GD) for learning diverse solutions to the CircuitSAT
problem. We re-frame the CircuitSAT problem as a multi-output
regression task, where each logic gate is modeled with a probabilis-
tic representation. We subsequently formulate a loss function by
incorporating specified constraints into the circuit. This approach
allows us to maintain the integrity of the circuit structure while
transforming the sampling process into a learning process. This
process enables the generation of independent solutions to the Cir-
cuitSAT problem in a parallel fashion, enabling acceleration with
GPUs. In summary, we make the following contributions in this
paper.

• We introduce a novel differentiable sampler for multi-level
digital circuits, called Demotic.

1The code of Demotic is available at https://github.com/arashardakani/Demotic.

• We use a probabilistic representation to model logic gates
and convert the CircuitSAT problem into a multi-output
regression task.

• Our proposed sampling method maintains the original struc-
ture of the underlying digital circuit without the need for
the conversion into any Boolean formulation.

• Demotic enables performing the learning process in parallel,
leading to GPU-accelerated sampling of satisfying formulas
for the CircuitSAT problem.

• We demonstrate the performance of Demotic across dif-
ferent CircuitSAT instances from the ISCAS-85 benchmark
suite [13].

2 PRELIMINARIES
2.1 CircuitSAT Sampling
CircuitSAT sampling refers to the task of sampling solutions from
the solution space of a given CircuitSAT problem. In a Boolean
circuit, variables can only take on binary values of either 0 or 1.
A digital circuit is composed of various logic gates such as AND,
OR, and NOT gates, which manipulate these Boolean variables. The
output of such a circuit is produced based on how these logic gates
operate.

In CircuitSAT, the objective is to determine whether a given
circuit, representing a Boolean expression, has an assignment of
binary values to its variables that results in the circuit output valua-
tion to 1. The sampling aspect introduces a probabilistic dimension
to this problem. Instead of finding a single solution for satisfiable
problems, CircuitSAT sampling aims to generate multiple solutions
or samples from the set of all possible solutions. Sampling solu-
tions from CircuitSAT instances is an integral part of the design
verification process, with significant applications in CRV [17].

CRV is a verification methodology employed in the design and
testing of modern digital circuits. It involves generating random
input stimuli for the design under test (DUT) while adhering to
a set of predefined constraints. This method helps explore a wide
range of possible input scenarios, increasing the likelihood of iden-
tifying design flaws and ensuring robustness. Inputs to the DUT are
generated randomly within specified constraints. This randomness
helps cover a broad spectrum of test scenarios, including corner
cases that might not be easily detected with directed tests. Con-
straints are rules or conditions that the random inputs must satisfy.
These can be functional constraints based on the design specifica-
tions or operational constraints based on practical considerations.
Constraints ensure that the generated random inputs are valid and
meaningful for the DUT.

For instance, consider a 4-bit multiplier with two unsigned 4-
bit binary inputs and an 8-bit product as its primary output. To
restrict our bug search to input pairs where the product is less
than 128, we need to set the most significant bit of the product
to 0 and find random satisfying solutions. It is worth mentioning
that while exhaustive search can be used for design verification
with complete coverage, it is often impractical for complex designs
due to scalability and efficiency limitations. CRV provides a more
feasible, efficient, and effective approach by leveraging constraints
and randomization to achieve high coverage and uncover critical
issues within a manageable timeframe.

https://github.com/arashardakani/Demotic
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One common approach for CircuitSAT sampling is the use of
SAT solvers with sampling capabilities. These solvers are designed
to not only determine the satisfiability of a Boolean formula but
also to sample solutions from the solution space. There are various
technique for efficient SAT solving, including backtracking algo-
rithms like Davis-Putnam-Logemann-Loveland (DPLL) algorithm
[8], stochastic local searchmethods likeWalkSAT [28], and CDCL al-
gorithms [20, 21]. Over the past years, various algorithms and tech-
niques have been developed for CircuitSAT/SAT sampling includ-
ing randomized algorithms, Markov chain Monte Carlo (MCMC)
methods, and sampling-based heuristics [9, 12, 16, 18, 29]. These ap-
proaches typically involve iteratively exploring the solution space,
selecting candidate solutions based on certain criteria, and stochas-
tically accepting or rejecting them.

The process of CircuitSAT sampling using SAT solvers involves
translating the structure and logic of the given circuit into an equiv-
alent Boolean formula, typically represented in CNF. The CNF
consists of a conjunction of multiple clauses (i.e., AND of multiple
clauses), where each clause is a disjunction of literals (i.e., OR of
literals). Literals are referred to as Boolean variables or their com-
plements. During the conversion process, the number of inputs,
outputs and intermediate signals directly contributes to the number
of variables in the CNF. The functionality of logic gates and their
interconnections determine the number of clauses in the CNF.

The size and complexity of the CNF formula vary significantly
depending on factors such as the number of gates, the depth of the
circuit, and the number of inputs, outputs and intermediate signals.
In general, the CNF formula tends to contain significantly more
bit-wise operations than its corresponding circuit. The introduced
complexity to the SAT instance as the result of the conversion
exponentially increases the time required to find a solution using
SAT solvers since the SAT problem is NP-complete. This issue
becomes worse when the complexity of digital circuits increases,
making SAT sampling a non-trivial task, especially for large or
complex circuits.

2.2 Multi-Output Regression Task
A multi-output regression task is a statistical technique used to
predict multiple target variables simultaneously from a set of input
variables [5]. In this task, the primary objective is to develop amodel
that accurately captures the relationships between input and output
variables. The model can be constructed using various techniques
such as linear regression and neural networks. The model is then
trained using a dataset where both input-output pairs are known.
During training, the model’s parameters are adjusted byminimizing
the distance between the predicted outputs and the desired target
variables. A common metric to measure such a distance is mean
squared error (MSE) or ℓ2-loss.

3 METHODOLOGY
In this section, we describe our differentiable solver/sampler for

multi-level digital circuits. While the common approach in solving
CircuitSAT typically involves converting the underlying circuit into
CNF and employing a SAT solver to find the satisfying solution,
we take a completely different approach. Instead, we re-frame the
CircuitSAT problem as a multi-output regression task, transforming
it into a learning problem. Digital circuits are inherently discrete

Table 1: Probability model of logic gates.

Gate Input Probability Output Probability Derivative w.r.t Input

NOT 𝑃1 𝑃𝑦 = 𝑃1 = 1 − 𝑃1
𝜕𝑃𝑦

𝜕𝑃1
= −1

AND 𝑃1, 𝑃2 𝑃𝑦 = 𝑃1 𝑃2
𝜕𝑃𝑦

𝜕𝑃1
= 𝑃2,

𝜕𝑃𝑦

𝜕𝑃2
= 𝑃1

OR 𝑃1, 𝑃2 𝑃𝑦 = 1 − 𝑃1 𝑃2
𝜕𝑃𝑦

𝜕𝑃1
= 𝑃2,

𝜕𝑃𝑦

𝜕𝑃2
= 𝑃1

NAND 𝑃1, 𝑃2 𝑃𝑦 = 1 − 𝑃1 𝑃2
𝜕𝑃𝑦

𝜕𝑃1
= −𝑃2,

𝜕𝑃𝑦

𝜕𝑃2
= −𝑃1

NOR 𝑃1, 𝑃2 𝑃𝑦 = 𝑃1 𝑃2
𝜕𝑃𝑦

𝜕𝑃1
= −𝑃2,

𝜕𝑃𝑦

𝜕𝑃2
= −𝑃1

XOR 𝑃1, 𝑃2 𝑃𝑦 = 𝑃1 𝑃2 + 𝑃1 𝑃2
𝜕𝑃𝑦

𝜕𝑃1
= 1 − 2𝑃2,

𝜕𝑃𝑦

𝜕𝑃2
= 1 − 2𝑃1

XNOR 𝑃1, 𝑃2 𝑃𝑦 = 𝑃1 𝑃2 + 𝑃1 𝑃2
𝜕𝑃𝑦

𝜕𝑃1
= 2𝑃2 − 1,

𝜕𝑃𝑦

𝜕𝑃2
= 2𝑃1 − 1

and non-differentiable. Therefore, we first need to relax the Circuit-
SAT problem into a continuous form while accurately capturing
the structure and behavior of the circuit. To accomplish this, we
leverage the probability model of digital gates, as shown in Table
1. This probability model is commonly used in different domains
such as stochastic computing [3] and dynamic power estimation
of digital circuits [14]. We use these probabilities to model each
gate in the circuit. The result of such modeling is a differentiable
formulation of the underlying circuit that accurately describes its
functionality while preserving its spatial structure. Of course, the
outcome of this model remains identical to the original circuit in
its discrete form for any binary input valuations.

Given the differentiable model of the circuit obtained by replac-
ing its discrete logic gates with their corresponding probability
model, our objective now is to generate a set of inputs that satisfy
a desired constraint. This constraint could pertain to any desired
valuation of intermediate signals or outputs. To generate satisfying
solutions to the CircuitSAT problem, we represent the input vari-
ables to the circuit as V ∈ R𝑏×𝑛 , where 𝑛 represents the number of
variables and 𝑏 denotes the batch size. We define the matrix V as
the parameters of an embedding layer in our circuit model, which
will be updated during the learning process. It is worth mentioning
that the number of variables in our sampling method is signifi-
cantly fewer than that of SAT samplers, remaining the same as the
number of inputs in the circuit. This discrepancy arises because
SAT samplers deal with the CNF of the circuit, where each gate or
component introduces additional variables. The embedding layer
converts the real-value input variables of the circuit into proba-
bilities in the range from 0 to 1 using the sigmoid function 𝜎 (·),
expressed as:

P = 𝜎 (V) = 1
1 + 𝑒−V

, (1)

where P ∈ [0, 1]𝑏×𝑛 represents the input probabilities to the under-
lying circuit. The circuit functionality is then computed as:

Y = F (P), (2)

where F : [0, 1]𝑏×𝑛 → [0, 1]𝑏×𝑚 denotes the probabilistic model
of the circuit. The matrix Y ∈ [0, 1]𝑏×𝑚 denotes the 𝑚 outputs
across 𝑏 data batches. The ℓ2-loss function L can be constructed by
measuring the distance between Y and the target output valuation
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Verilog code example
module c15(G1,G2,G3,G6,G7,G19,G22);
input G1,G2,G3,G6,G7;
output G19,G22;

wire G10,G11,G16;

nand NAND2_0(G10,G1,G3);
xor XOR2_0(G11,G3,G6);
nand NAND2_1(G16,G2,G11);
and AND2_0(G19,G11,G7);
nor NOR2_0(G22,G10,G16);

endmodule

Digital Circuit Model

Embedding Layer

Loss Cal-
culation

PyTorch description of the Verilog code
import torch.nn as nn

def AND(a, b):
return a * b

def XOR(a, b):
return (1 - a) * b + a * (1 - b)

def NAND(a, b):
return 1 - a * b

def NOR(a, b):
return (1 - a) * (1 - b)

c l a s s c15(nn.Module):
def __init__(self):

super().__init__ ()

def forward(self , inputs):
G1, G2, G3 , G6, G7 = inputs
G10 = NAND(G1 , G3)
G11 = XOR(G3 , G6)
G16 = NAND(G2 , G11)
G19 = AND(G11 , G7)
G22 = NOR(G10 , G16)
outputs = G19 , G22

return outputs

Parser

𝐺1

𝐺3

𝐺3
𝐺6

𝐺2

𝐺7

𝐺11

𝐺10

𝐺16
𝐺22

𝐺19
Module c15

Figure 1: An overview of Demotic is shown. Demotic takes a Verilog instance describing a combinational circuit and parse it
into its corresponding probabilistic model described in PyTorch. The embedding layer converts the learnable real-value inputs
into probabilities. The ℓ2-loss function is calculated in each training iteration and the input variables are updated using GD.

matrix T ∈ {0, 1}𝑏×𝑚 as follows:

L =
∑︁
𝑏,𝑚

| |Y − T| |22 . (3)

The above loss function can be minimized, and the input variables
(i.e., V) can be updated using GD in an iterative manner. Upon
convergence, the𝑏 solutions to the CircuitSAT problem are obtained
by converting the soft input values (i.e., V) into hard values (i.e.,
Ṽ ∈ {0, 1}𝑏×𝑛).

Fig. 1 illustrates the overview of Demotic. Demotic is equipped
with a parser to covert the circuit described in either bit-blasted
Verilog or Berkeley Logic Interchange Format (BLIF) into its corre-
sponding probabilistic model. Consequently, Demotic can describe
combinational circuits and generate satisfying solutions for any
arbitrary constraint on the circuit. Such a sampling paradigm can
also benefit from GPU acceleration due to the parallel independent
computations across the data batches, enabling a high-throughput
sampling procedure.

To better understand our methodology, let us consider a quan-
titative example using the module “c15” shown in Fig. 1. We set
the output node 𝐺19 to 1 as an output constraint, while the output
node𝐺22 can take any value of either 0 or 1. Therefore, the goal in
this example is to find a pair of inputs such that the output node
𝐺19 is equal to 1. In this example, the input nodes contributing to
our output constraint are 𝐺3, 𝐺6, and 𝐺7. These inputs are learned
iteratively using gradient descent. The remaining input nodes, 𝐺1,
𝐺2, and 𝐺3, will not be updated and can take any arbitrary binary
values. During each training iteration, each input node is updated

by computing the derivative of the loss function with respect to
each input node.

To illustrate the process, we generate two samples. In the first
step, we randomly assign two values to each input node as follows:

v𝐺3 =

[
0.1
−0.2

]
, v𝐺6 =

[
0.5
−0.4

]
, v𝐺7 =

[
−0.7
−0.8

]
, (4)

where the concatenation of the above vectors forms the matrix V.
Next, the input probabilities to the circuit are calculated using the
sigmoid function:

p𝐺3 =

[
0.5250
0.4502

]
, p𝐺6 =

[
0.6225
0.4013

]
, p𝐺7 =

[
0.3318
0.3100

]
. (5)

Using the probability model of each gate shown in Table 1, the
probabilities of the intermediate node𝐺11 and the output node𝐺19
are calculated as follows:

p𝐺11 =

[
0.4939
0.4902

]
, p𝐺19 =

[
0.1639
0.1520

]
. (6)

Given the target value of 1 for the output node 𝐺19, the loss is
calculated as:

L = (p𝐺19 − 1)2 =
[
(0.1639 − 1)2
(0.1520 − 1)2

]
=

[
0.6991
0.7192

]
. (7)

The above computations are commonly referred to as forward
computations. To update the value of the input variables, we need
to calculate the derivative of the loss with respect to each input
variable, which is referred to as backward computations. This in-
volves using the derivatives of each gate (as shown in Table 1) and
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applying the chain rule. The process is derived as follows:
𝜕L
𝜕v𝐺3

=
𝜕L

𝜕p𝐺19

𝜕p𝐺19
𝜕p𝐺11

𝜕p𝐺11
𝜕p𝐺3

𝜕p𝐺3
𝜕v𝐺3

= 2p𝐺19 · p𝐺7 · (1 − 2p𝐺6)

· 𝜎 (v𝐺3) · (1 − 𝜎 (v𝐺3)) =
[
0.0339
−0.0257

]
,

𝜕L
𝜕v𝐺6

=
𝜕L

𝜕p𝐺19

𝜕p𝐺19
𝜕p𝐺11

𝜕p𝐺11
𝜕p𝐺6

𝜕p𝐺6
𝜕v𝐺6

= 2p𝐺19 · p𝐺7 · (1 − 2p𝐺3)

· 𝜎 (v𝐺6) · (1 − 𝜎 (v𝐺6)) =
[
0.0065
−0.0126

]
,

𝜕L
𝜕v𝐺7

=
𝜕L

𝜕p𝐺19

𝜕p𝐺19
𝜕p𝐺7

𝜕p𝐺7
𝜕v𝐺7

= 2p𝐺19 · p𝐺11

· 𝜎 (v𝐺7) · (1 − 𝜎 (v𝐺7)) =
[
−0.1831
−0.1778

]
, (8)

where “·” denotes element-wise multiplication.
At this point, each variable is updated using the gradient descent

update rule. This involves subtracting the derivative of the loss,
scaled by the learning rate, from the corresponding input variables.
Given a learning rate of𝛾 = 10, the new values of the input variables
at the end of this iteration are obtained as follows:

v𝐺3 = v𝐺3 − 𝛾
𝜕L
𝜕v𝐺3

=

[
−0.2389
0.0569

]
, v𝐺6 =

[
0.4349
−0.2741

]
,

v𝐺7 =

[
1.1311
0.9783

]
. (9)

This process can be repeatedmultiple times until convergence. How-
ever, even after one iteration in this specific example, we obtain two
valid and distinct solutions by rounding the input variables to their
nearest discrete values after applying the sigmoid function. In this
example, the two input pairs of (𝑣𝐺3 = −0.2389, 𝑣𝐺6 = 0.4349, 𝑣𝐺7 =
1.1311) and (𝑣𝐺3 = 0.0569, 𝑣𝐺6 = −0.2741, 𝑣𝐺7 = 0.9783) are
rounded to (�̃�𝐺3 = 0, �̃�𝐺6 = 1, �̃�𝐺7 = 1) and (�̃�𝐺3 = 1, �̃�𝐺6 =

0, �̃�𝐺7 = 1), respectively. As demonstrated through this example,
the forward and backward computations of the two samples are
independent of each other. This allows for the parallel execution of
the learning process across multiple samples (i.e., batches), enabling
GPU acceleration.

4 EXPERIMENTAL RESULTS
In this section, we showcase how our differentiable method tackles
sampling in CircuitSAT problems. To achieve this, we have created
a prototype for Demotic using PyTorch. PyTorch is an open-source
machine learning framework that blends Torch’s efficient GPU-
accelerated backend libraries with a user-friendly Python interface.
For a comprehensive evaluation, we use the ISCAS-85 benchmark
suite, comprising 11 combinational circuits [13]. The results of
Demotic were obtained from running on a system equipped with
an Intel Xeon E5 − 2698 with 2.2GHz clock rate and 8 NVIDIA
V100 GPUs with 32GB of memory each. We report the runtime
performance of Demotic in term of throughput, measured as the
number of valid and distinct solutions per second, while using a
single NVIDIA V100 GPU. To obtain the experimental results of
Demotic for the CircuitSAT problems of the ISCAS-85 benchmark
suite, we used GD as the optimizer. We set the learning rate to 15,
the batch size to 500, 000, and the number of iterations to 10.

4.1 Runtime Performance
We use all 11 combinational circuits from the ISCAS-85 benchmark
suite, encompassing designs ranging from relatively simple to mod-
erately complex. These circuits serve as standardized test cases for
evaluating algorithm performance in tasks such as logic synthesis,
technology mapping, simulation, and testing. We convert these
circuits into CircuitSAT sampling problems by randomly assigning
specific binary values to some of their output nodes. The objective
is to identify a set of inputs that would yield the desired values
for those fixed outputs. The size of the solution space for such
problems is proportional to the number of inputs in these circuits.
Table 2 summarizes the sampling performance of Demotic in terms
of throughput for all the combinational circuits in the ISCAS-85
benchmark suite. Throughput is measured as the number of unique
solutions generated per second. We report the experimental results
corresponding to the best throughput obtained from each sampler
in Table 2.

For comparison purposes, we evaluate Demotic’s performance
against state-of-the-art SAT sampler baselines, namely UniGen3
[29], CMSGen [12], and DiffSampler [2]. UniGen3 and CMSGen
are highly optimized C++ implementations, whereas DiffSampler
is a GPU-accelerated SAT sampler implemented in Python using the
high-performance numerical computing library JAX. To this end,
we first need to convert the CircuitSAT problems into their CNF
formulas under the same aforementioned output constraints. We
employ the Tseytin transformation, which takes a combinational
logic circuit as input and produces its corresponding CNF [31].
The size of the solution space for the resulting SAT problems is
proportional to the number of variables in their CNF representation.
Table 2 presents the performance of the baseline samplers for the
obtained SAT instances. UniGen3 and CMSGen were executed on
server-grade Intel Xeon Gold 6254 CPU with a clock rate of 3.1GHz
and 790GB of RAM. Similar toDemotic, the results ofDiffSampler
were obtained from running on a system equipped with an Intel
Xeon E5 − 2698 with 2.2GHz clock rate and 8 NVIDIA V100 GPUs
with 32GB of memory each.

The experimental results presented in Table 2 showcase the su-
perior performance of Demotic in the sampling task, surpassing
state-of-the-art samplers by over two orders of magnitude in most
cases. This is because the conversion to CNF introduces additional
variables and operations in the form of clauses depending on the
complexity of the underlying circuit, as shown in Table 2, undermin-
ing the performance of baseline samplers across all the CircuitSAT
instances except for “c17”. Due to the limited number of inputs in
the CircuitSAT instance for “c17”, only 18 unique solutions exist
when constraining the circuit’s second output to 1. This restric-
tion reduces Demotic’s performance in this scenario, as the GPU
becomes under-utilized. Consequently, CMSGen performs more
efficiently in this case.

Fig. 2 illustrates the scaling patterns of runtime performance
relative to the number of unique solutions generated by each sam-
pler. The analysis reveals two key findings: Firstly, Demotic overall
demonstrates superior efficiency compared to UniGen3, CMSGen
and DiffSampler, especially when sampling larger numbers of so-
lutions. Secondly, our method exhibits more efficient scalability, as
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Table 2: The runtime performance of Demotic, UniGen3, CMSGen and DiffSampler is evaluated in terms of unique solution
throughput. Throughput is measured under the case where each method is tasked with generating a minimum of 1000 distinct
solutions (except for “c17”) within a timeout (TO) of 2 hours.

CircuitSAT # Inputs # Outputs # Logic # Variables # Clauses Demotic UniGen3 CMSGen DiffSamplerInstance Gates (CNF) (CNF)

c17 5 2 6 25 19 850 15 2, 928 36
c432 36 7 160 539 516 2, 054, 518 1.5 10, 070 105
c499 41 32 202 683 717 1, 123, 605 1.5 5, 704 28
c880 60 26 383 1198 1115 510, 760 0.2 4, 379 15
c1355 41 32 546 1683 1613 648, 736 0.2 3, 109 0.9
c1908 33 25 880 2436 2381 367, 720 TO 2, 213 TO
c2670 233 140 1269 3642 3274 323, 617 TO 1, 385 TO
c3540 50 22 1669 4680 4611 65, 156 TO 1, 073 TO
c5315 178 123 2307 6994 6698 180, 085 TO 655 TO
c6288 32 32 2416 7280 7219 40, 325 TO 14 TO
c7552 207 108 3513 9971 9661 64, 483 TO 430 TO
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Figure 2: Log-Log plot of runtime in millisecond against the
count of unique satisfying solutions found within that run
time across all the CircuitSAT problems from the ISCAS-85
benchmark. Dotted lines denote the trend of the runtime
performance for each sampler.

evidenced by the linear scaling of the time required for generating
larger numbers of solutions.

4.2 Learning Dynamics
In this section, we provide a detailed analysis of the learning dy-
namics of Demotic over time. For all experiments, we set the batch
size to 500, 000 and the learning rate to 15 unless stated otherwise.
We excluded the module “c17” from our experiments due to its
limited number of inputs.

Figure 3 illustrates the learning progress of Demotic in terms of
the number of unique solutions discovered across 10 iterations. The
learning curves show that as the number of iterations increases,
the number of unique solutions learned by Demotic also increases.
While there is no theoretical guarantee that gradient descent will
reach the global minimum in non-convex landscapes, including our
continuous formulation of CircuitSAT problems, our experiments
demonstrate its effectiveness in finding solutions that perform well

in the continuous form. Even if these solutions aren’t the abso-
lute global minimum in the continuous form, they still satisfy the
CircuitSAT constraints in the discrete form.

The convergence rate for each CircuitSAT problem varies de-
pending on the complexity and structure of the underlying circuit,
as well as the chosen hyper-parameters, such as the learning rate.
More complex circuits and sub-optimal hyper-parameter settings
typically result in slower convergence rates. Conversely, simpler
circuits and well-tuned hyper-parameters tend to lead to faster
convergence. Choosing an appropriate learning rate, as the most
important hyper-parameter in our experiments, is crucial for ef-
fective model training. Very low learning rates can make slow
convergence of the learning process, requiring many iterations to
reach an optimal solution, which increases computational cost and
time. On the other hand, very high learning rates can make the
model oscillating around the minimum and leading to poor con-
vergence. For instance, Fig. 4 illustrates the learning progress of
Demotic across different learning rates ranging from 1 to 20 for the
CircuitSAT problem “c2670”. In this example, the learning rate of 15
provides the best convergence among the tested rates. In contrast,
the learning rate of 1 results in the slowest convergence, while the
learning rate of 20 leads to slower convergence than the learning
rate of 15.

While increasing the number of iterations can lead to learning
more unique solutions, it does not necessarily result in higher
throughput, as shown in Fig. 5. In fact, the majority of solutions are
learned by the end of the first iteration. Specifically, the number of
solutions at the end of the first iteration is higher than the number
of new unique solutions learned at the end of each subsequent
iteration. Given that the latency of each iteration is roughly the
same, the throughput of generating unique solutions decreases as
the number of iterations increases, as depicted in Fig. 5.

This observation suggests that running Demotic for only one
iteration may be sufficient to obtain the desired number of distinct
solutions by adjusting the batch size. However, this conclusion
holds only when there is no GPU memory constraint for the under-
lying circuit. GPU acceleration of CircuitSAT sampling incurs GPU
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Figure 3: Log learning plot of Demotic showing the number
of unique satisfying solutions across different iterations for
the CircuitSAT problems from the ISCAS-85 benchmark.

0 2 4 6 8 10105

105.5

Number of Iterations

[lo
g
sc
al
e]

N
um

be
r
of

U
ni
qu

e
So
lu
tio

ns

c2670 (𝛾 = 1)
c2670 (𝛾 = 5)
c2670 (𝛾 = 10)
c2670 (𝛾 = 15)
c2670 (𝛾 = 20)

Figure 4: Log learning plot of Demotic showing the number
of unique satisfying solutions across different iterations and
learning rates for the CircuitSAT problem of “c2670”.

memory usage depending on the size of the CircuitSAT problem
and the batch size. Fig. 6 shows the GPU memory usage of the Cir-
cuitSAT problems, measured by “nvidia-smi”, across different batch
sizes. This figure illustrates the significant growth in GPU memory
usage for larger batch sizes. In scenarios where generating a large
number of unique samples is targeted but there are constraints on
GPU memory usage, the inevitable solution is to run the learning
process for more iterations, albeit at the cost of lower throughput.

5 RELATEDWORK
Several SAT formula sampling techniques have been explored in
the literature. UniGen3, for instance, offers approximate uniformity
guarantees [26], while CMSGen and Quicksampler [9] prioritize
sampling efficiency. Previous research has also investigated the use
of data-parallel hardware for SAT solving, primarily focusing on
parallelizing CDCL or other heuristic-based SAT solving algorithms
[7, 25]. Attempts have been made to frame a SAT instance as a
constrained numerical optimization problem, as seen in recent
work like MatSat [27] and NeuroSAT [1]. Nevertheless, these
approaches have fallen short in showcasing the efficacy of GPU-
accelerated formula sampling on standard benchmarks, which are
larger and more diverse than the small, random instances typically
examined in earlier research. A new differentiable sampling method
named DiffSampler was recently introduced in [2]. This method
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Figure 5: Log plot of the throughput of Demotic, measured by
the number of unique satisfying solutions per second across
different iterations for the CircuitSAT problems from the
ISCAS-85 benchmark.
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Figure 6: Log-log plot of GPU memory usage of Demotic in
megabytes, measured by “nvidia-smi” across different batch
sizes for the CircuitSAT problems from the ISCAS-85 bench-
mark.

allows for GPU-accelerated SAT sampling on standard benchmarks
and achieved a comparable runtime performance with respect to
UniGen3 and CMSGen.

6 CONCLUSION
CircuitSAT problems are typically transformed into Boolean Satisfi-
ability (SAT) problems, where the sampling task is performed using
SAT samplers, albeit with computational complexities, especially
for large circuits. To reduce the computational complexity of the
CircuitSAT sampling task and leverage GPU acceleration, this paper
introduced a novel differentiable sampler called Demotic. Demotic
re-frames the CircuitSAT problem as a multi-output regression task,
utilizing gradient descent for learning diverse solutions. By main-
taining the circuit’s structurewithout Boolean conversion,Demotic
enables parallel learning and GPU-accelerated sampling, offering
significant advancements in CircuitSAT sampling methodology. We
have demonstrated the exceptional performance of Demotic in
the sampling task across various CircuitSAT instances, where it
outperformed state-of-the-art samplers by more than two orders of
magnitude in most cases.
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